Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.

Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM). This analysis includes cross-sectional data from a total of 146 participants (18-91 years; mean age: 52.4 (SD 21.4); 83 (57%) female) enrolled in two normative lifespan cohorts at Albert Einstein College of Medicine from 2019-2023. We compute the aggregate GWI slope for each parameter, across each of 6 brain regions (cingulate, frontal, occipital, orbitofrontal, parietal, and temporal) for each participant. The association of GWI slope in each region with age was assessed using a linear model, with biological sex as a covariate.

Results: We demonstrate this method captures an inherent change in fractional anisotropy (FA), axial diffusivity (AD), orientation dispersion index (ODI) and intracellular volume fraction (ICVF) across the GWI that is characterized by small variance. We identified statistically significant associations of FA slope with age in all regions (p<0.002 for all analyses), with FA slope magnitude inversely associated with higher age. Similar statistically significant age-related associations were found for AD slope in cingulate, occipital, and temporal regions, for ODI slope in parietal and occipital regions, and for ICVF slope in frontal, orbitofrontal, parietal, and temporal regions.

Conclusion: The inverse association of slope magnitude with age indicates loss of the sharp GWI transition in aging, which is consistent with processes such as dendritic pruning, axonal degeneration, and inflammation. This method overcomes techniques issues related to interrogating the GWI. Beyond characterizing normal aging, it could be applied to explore pathological effects at this crucial, yet under-researched region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2025.121019DOI Listing

Publication Analysis

Top Keywords

microstructural transition
8
gray matter-white
8
matter-white matter
8
matter interface
8
cortical gray
8
gwi slope
8
gwi
6
characterizing microstructural
4
transition gray
4
matter
4

Similar Publications

Two dimensional confinement induced discontinuous chain transitions for augmented electrocaloric cooling.

Nat Commun

January 2025

Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.

Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.

View Article and Find Full Text PDF

Characterizing the Microstructural Transition at the Gray Matter-White Matter Interface: Implementation and Demonstration of Age-Associated Differences.

Neuroimage

January 2025

Department of Radiology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY. Electronic address:

Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.

Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM).

View Article and Find Full Text PDF

During the oxygen evolution reaction (OER), metal-organic framework (MOF) catalysts undergo structural reorganization, a phenomenon that is still not fully comprehended. Additionally, designing MOFs that undergo structural reconstruction to produce highly active OER catalysts continues to pose significant challenges. Herein, a bimetallic MOF (CoNi-MOF) with carboxylate oxygen and pyridine nitrogen coordination has been synthesized and its reconstruction behavior has been analyzed.

View Article and Find Full Text PDF

Enhanced second harmonic generation in a 2 polymorph of CHNOZn for UV nonlinear optical applications.

Dalton Trans

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

The quest for novel nonlinear optical (NLO) polymorphs is pivotal for advancing laser technology and frequency conversion applications. We present a detailed study on the synthesis and properties of the 2 polymorph of CHNOZn, which exhibits an enhanced second harmonic generation (SHG) effect, 0.3 times that of KDP, nearly 8-fold higher than the 422 phase.

View Article and Find Full Text PDF

Alkyl bistriflimidate-mediated electrochemical deaminative functionalization.

Chem Sci

December 2024

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China

An efficient electrochemical strategy for the deaminative functionalization of alkyl amines has been described. The alkyl bistriflimidates were readily accessed by the treatment of alkyl amines with trifluoromethanesulfonic anhydride and unprecedentedly employed for C-N bond activation. They can be applied to a range of transformations, including borylation, sulfuration, selenation, sulfonation, Additionally, deaminative esterification and amidation can be performed under catalytic base conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!