GI (Gastrointestinal) malignancies are one of the most common and lethal cancers globally. The dawn of precision medicine and developing technologies have reduced the mortality rates for GI malignancies, underscoring the main role of early detection methods for survival rate improvement. Artificial intelligence (AI) is a new technology that may improve GI cancer screening, treatment, and therapeutic efficiency for better patient care. AI could accelerate the development of targeted therapies by analyzing considerable data from the genome and identifying biomarkers connected with GI tumors. This opens up new avenues toward more tailored and personalized approaches, raising efficacy while reducing undesired side effects. For instance, AI may improve treatment outcomes by accurately predicting patient responses to therapeutic regimens, helping oncologists choose the most effective treatment options. This review will outline the transformative potential of AI in GI oncology by emphasizing the incorporation of AI-based technologies to enhance patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2025.217461DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
patient care
8
intelligence gastrointestinal
4
gastrointestinal cancers
4
cancers diagnostic
4
diagnostic prognostic
4
prognostic surgical
4
surgical strategies
4
strategies gastrointestinal
4
gastrointestinal malignancies
4

Similar Publications

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Machine learning and multi-omics in precision medicine for ME/CFS.

J Transl Med

January 2025

Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Diagnosis of Parkinson's disease by eliciting trait-specific eye movements in multi-visual tasks.

J Transl Med

January 2025

School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.

Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.

View Article and Find Full Text PDF

Background: Alopecia areata (AA) is a common non-scarring hair loss disorder associated with autoimmune conditions. However, the pathobiology of AA is not well understood, and there is no targeted therapy available for AA.  METHODS: In this study, differential gene expression analysis, immune status assessment, weighted correlation network analysis (WGCNA), and functional enrichment analysis were performed to identify shared genes associated with both immunological response and AA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!