Random walks and related spatial stochastic models have been used in a range of application areas, including animal and plant ecology, infectious disease epidemiology, developmental biology, wound healing and oncology. Classical random walk models assume that all individuals in a population behave independently, ignoring local physical and biological interactions. This assumption simplifies the mathematical description of the population considerably, enabling continuum-limit descriptions to be derived and used in model analysis and fitting. However, interactions between individuals can have a crucial impact on population-level behaviour. In recent decades, research has increasingly been directed towards models that include interactions, including physical crowding effects and local biological processes such as adhesion, competition, dispersal, predation and adaptive directional bias. In this article, we review the progress that has been made with models of interacting individuals. We aim to provide an overview that is accessible to researchers in application areas, as well as to specialist modellers. We focus particularly on derivation of asymptotically exact or approximate continuum-limit descriptions and simplified deterministic models of mean-field behaviour and resulting spatial patterns. We provide worked examples and illustrative results of selected models. We conclude with a discussion of current areas of focus and future challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732428PMC
http://dx.doi.org/10.1098/rsif.2024.0422DOI Listing

Publication Analysis

Top Keywords

random walk
8
walk models
8
application areas
8
continuum-limit descriptions
8
models
7
models life
4
life sciences
4
sciences including
4
including births
4
births deaths
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!