Accurate prediction of survival in patients with acute myelogenous leukemia (AML) is challenging. Therefore, we developed a predictive survival model using endocrine-related gene expression to identify an endocrine signature for accurate stratification of AML prognosis. RNA matrices and clinical data for AML were downloaded from a training dataset (GEO) and two validation datasets (TCGA and TARGET). In relation to the survival outcome, a risk model was constructed by incorporating seven endocrine-related genes. The model exhibited favorable predictive efficacy in estimating 5-year survival rates, as demonstrated by both the training and validation cohorts. Multivariable analysis revealed that the endocrine signature demonstrated autonomous prognostic significance in the aforementioned cohorts. Prediction accuracy for 5-year overall survival increased using a nomogram combining endocrine risk score and classical prognostic factors compared with using classical prognostic factors alone. The model predictions were confirmed using AML cell lines. The endocrine-related prognostic model established in this study improves AML survival prediction accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000543272DOI Listing

Publication Analysis

Top Keywords

survival model
8
endocrine-related gene
8
gene expression
8
acute myelogenous
8
myelogenous leukemia
8
endocrine signature
8
5-year survival
8
prediction accuracy
8
classical prognostic
8
prognostic factors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!