The aim of our study was to evaluate the specific performance of an artificial intelligence (AI) algorithm for lung nodule detection in chest radiography for a larger number of nodules of different sizes and densities using a standardized phantom approach. A total of 450 nodules with varying density (d1 to d3) and size (3, 5, 8, 10 and 12 mm) were inserted in a Lungman phantom at various locations. Radiographic images with varying projections were acquired and processed using the AI algorithm for nodule detection. Computed tomography (CT) was performed for correlation. Ground truth (detectability) was established through a human consensus reading. Overall sensitivity and specificity of 0.978 and 0.812, respectively, were achieved for nodule detection. The false-positive rate was low with an overall rate of 0.19. The overall accuracy was calculated as 0.84 for all nodules. While most studies evaluating AI performance in the detection of pulmonary nodules have evaluated a mix of varying nodules, these are the first results of a controlled phantom-based study using a balanced number of nodules of all sizes and densities. To increase the radiologist's diagnostic performance and minimize the risk of decision bias, such algorithms have an obvious benefit in a clinical scenario.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MD.0000000000040485 | DOI Listing |
Medicine (Baltimore)
November 2024
Department of Radiology, Kantonsspital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland.
The aim of our study was to evaluate the specific performance of an artificial intelligence (AI) algorithm for lung nodule detection in chest radiography for a larger number of nodules of different sizes and densities using a standardized phantom approach. A total of 450 nodules with varying density (d1 to d3) and size (3, 5, 8, 10 and 12 mm) were inserted in a Lungman phantom at various locations. Radiographic images with varying projections were acquired and processed using the AI algorithm for nodule detection.
View Article and Find Full Text PDFIntroduction: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormalities on CXRs, which may expand diagnostic support to a wider field of health professionals. There is a paucity of evidence on the impact of AI algorithms in assisting healthcare professionals (other than radiologists) who regularly review CXR images in their daily practice.
View Article and Find Full Text PDFBMJ Open
December 2024
Tianjin Centers for Disease Control and Prevention, Tianjin, Hedong District, China
Objective: The main purpose of this study was to analyse the association between obesity and thyroid nodules in children and adults living in iodine-sufficient areas in China.
Design: Analysis of data from two cross-sectional surveys.
Setting And Participants: 921 children from 2016 to 2021 and 1505 adults from 2018 to 2021 living in iodine-sufficient areas from Tianjin, China were recruited.
Although the toxic effect of Sedentary behavior (SED) on bone health has been demonstrated in the previous study, the underlying mechanisms of SED, or break SED to bone health remain unclear. In this study, we aim to investigate the effects of sedentary behavior (SED) on bone health, as well as the potential favor effects of moderate to vigorous physical activity (MVPA) and periodic interruptions of SED. To simulate SED, we used small Plexiglas cages (20.
View Article and Find Full Text PDFPhysiol Meas
January 2025
Chair of Measurements and Sensor Technology, Technische Universitat Chemnitz, Reichenhainerstrasse 70, Chemnitz, 09111, GERMANY.
Objective: Electrical Impedance Tomography (EIT) is a non-invasive technique used for lung imaging. A significant challenge in EIT is reconstructing images of deeper thoracic regions due to the low sensitivity of boundary voltages to internal conductivity variations. The current injection pattern is decisive as it influences the current path, boundary voltages, and their sensitivity to tissue changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!