Transcription factors play a crucial role in the biosynthesis of tanshinones, which are significant secondary metabolites derived from Salvia miltiorrhiza, commonly known as Danshen. These compounds have extensive pharmacological properties, including anti-inflammatory and cardioprotective effects. This review delves into the roles of various transcription factor families, such as APETALA2/ethylene response factor, basic helix-loop-helix, myeloblastosis, basic leucine zipper, and WRKY domain-binding protein, in regulating the biosynthetic pathways of tanshinones. We discuss the emerging mechanisms by which these transcription factors influence the synthesis of tanshinones, both positively and negatively, by directly regulating gene expression or forming complex regulatory networks. Additionally, the review highlights the potential applications of these insights in enhancing tanshinone production through genetic and metabolic engineering, setting the stage for future advancements in medicinal plant research.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MD.0000000000040343DOI Listing

Publication Analysis

Top Keywords

transcription factors
12
emerging mechanisms
8
transcription
4
tanshinones
4
factors tanshinones
4
tanshinones emerging
4
mechanisms transcriptional
4
transcriptional regulation
4
regulation transcription
4
factors play
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.

Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.

View Article and Find Full Text PDF

Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

View Article and Find Full Text PDF

Background: Root rot is a major disease affecting alfalfa (Medicago sativa L.), causing significant yield losses and economic damage. The primary pathogens include Fusarium spp.

View Article and Find Full Text PDF

Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.

Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!