Background: The neutrophil-mediated generation of neutrophil extracellular traps (NETs) results in an augmented inflammatory response and cellular tissue injury during acute myocardial infarction (AMI). Through the analysis of public database information, we discovered and confirmed putative critical genes involved in NETs-mediated AMI.
Methods: The AMI dataset GSE66360 and the single-cell dataset GSE163465 were downloaded from the Gene Expression Omnibus database. Key genes were screened by bioinformatics. Quantitative real-time PCR (qRT-PCR) was used to verify the key genes, and then a Mendelian randomization (MR) study was conducted on the basis of the genome-wide association study to determine the causal relationship between key genes and AMI. Dimensionality reduction clustering, pseudo-time series, and cell communication were performed on the single-cell dataset to analyze the key genes screened by bulk RNA sequencing and the dynamic evolution of NETs in the AMI process. Immunohistochemistry and Western blot were used to verify the key genes.
Results: Six key genes, IL1β, S100A12, TLR2, CXCL1, CXCL2, and CCL4, were screened out through bioinformatics. qRT-PCR results showed that compared with the control group, the expression of 5 key genes was upregulated in the AMI group. In the MR study, CXCL1 and CCL4 were observed to have a causal relationship with AMI. Single-cell analysis showed that NETs-related genes CCL4, CXCL2, and IL1β were highly expressed. Combining single cells, qRT-PCR and MR, gene CCL4 was selected as the focus of the study. H9c2 cardiomyocytes simulated myocardial infarction under hypoxia, and the results showed that the expression of gene CCL4 was increased. The immunohistochemical results of gene CCL4 showed that the expression was upregulated in the AMI group.
Conclusions: We found 6 key genes related to NETs-mediated cell damage during AMI. The results of MR showed that CXCL1 and CCL4 were causally related to AMI. Combining single cells, qRT-PCR and MR, gene CCL4 may play an important role in the AMI process. Our results may provide some insights into neutrophil-mediated cell damage during AMI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596368 | PMC |
http://dx.doi.org/10.1097/MD.0000000000040590 | DOI Listing |
Physiol Plant
January 2025
College of Life Sciences/ College of Agriculture, Yangtze University, Jingzhou, China.
Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.
View Article and Find Full Text PDFNat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFSci Rep
January 2025
General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212000, China.
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!