Unveiling the interplay between soluble guanylate cyclase activation and redox signalling in stroke pathophysiology and treatment.

Biomed Pharmacother

Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:

Published: January 2025

Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke. However, the specific involvement of cGMP in redox signalling remains elusive. Here, we demonstrate a significant cGMP-dependent reduction of reactive oxygen and nitrogen species upon sGC activation under hypoxic conditions, independent of any potential scavenger effects. Importantly, this reduction is directly mediated by downregulating NADPH oxidase (NOX) 4 and 5 during reperfusion. Using an in silico simulation approach, we propose a mechanistic link between increased cGMP signalling and reduced ROS formation, pinpointing NF-κB1 and RELA/p65 as key transcription factors regulating NOX4/5 expression. In vitro studies revealed that p65 translocation to the nucleus was reduced in hypoxic human microvascular endothelial cells following sGC activation. Altogether, these findings unveil the intricate regulation and functional implications of sGC, providing valuable insights into its biological significance and ultimately therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2025.117829DOI Listing

Publication Analysis

Top Keywords

soluble guanylate
8
guanylate cyclase
8
redox signalling
8
reactive oxygen
8
cgmp signalling
8
sgc activation
8
signalling
5
sgc
5
unveiling interplay
4
interplay soluble
4

Similar Publications

Unveiling the interplay between soluble guanylate cyclase activation and redox signalling in stroke pathophysiology and treatment.

Biomed Pharmacother

January 2025

Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:

Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke.

View Article and Find Full Text PDF

The main treatment of patients with chronic thromboembolic pulmonary hypertension (CTEPH) is radical surgery, pulmonary thromboendarterectomy (PEA). However, about 40% of patients with CTEPH are inoperable due to distal pulmonary vascular lesions or the severity of hemodynamic disorders. Almost 30% of patients with CTEPH experience persistent or recurrent pulmonary hypertension after surgery, that requires a drug treatment with PAH-specific drugs.

View Article and Find Full Text PDF

Objectives: To investigate clinical characteristics, symptom profile, testing practices, treatment patterns and quality of life (QoL) among patients with pulmonary arterial hypertension (PAH) in Latin America.

Design: Data from the Adelphi Real World PAH Disease Specific Programme, a cross-sectional survey with retrospective data collection.

Setting: University/teaching hospital, regional centres, private practices and government institutions in Argentina, Brazil, Colombia and Mexico.

View Article and Find Full Text PDF

Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.

View Article and Find Full Text PDF

Different sensitivities of porcine coronary arteries and veins to BAY 60-2770, a soluble guanylate cyclase activator.

J Pharmacol Sci

January 2025

Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan.

Nitric oxide (NO)-donor drugs, which stimulate reduced form of soluble guanylate cyclase (sGC), have different efficacy to the arteries and veins. This study examined whether sGC activators, which activate oxidized/apo sGC, also have arteriovenous selectivity similar to that of NO-donor drugs. The mechanical responses of the isolated blood vessels were assessed using the organ chamber technique and protein expression was verified using western blotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!