Recently study has found a new form of copper-dependent death called cuproptosis, which differs from apoptosis, ferroptosis, and necrosis. The main process of cuproptosis is copper directly combined with lipid-acetylated proteins in the TCA cycle of mitochondrial response, leading to the aggregation of lipid-acetylated proteins and the loss of Fe-S cluster proteins, resulting in mitochondrial dysfunction, and eventually causing cell death. Previous studies demonstrated that an imbalance in copper homeostasis exacerbates the pathological progression of Alzheimer's disease (AD) through the induction of oxidative stress, inflammatory response, and the accumulation of Aβ deposition and tau protein hyperphosphorylation. However, the underlying mechanisms remains to be elucidated. More importantly, research identifies the role of cuproptosis and further elucidates the underlying molecular mechanisms in AD. This review summarized the effects of copper metabolism on AD pathology, the characteristics and mechanism of cuproptosis and we discuss the significance of cuproptosis in the pathogenesis of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2025.117814 | DOI Listing |
Medicine (Baltimore)
November 2024
First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
This study investigates levels of cuproptosis markers in Wilson disease (WD) and their role in the occurrence and development of WD. We retrospectively collected clinical data from 76 patients with Leipzig score ≥ 4 hospitalized in the First Affiliated Hospital of Anhui University of Chinese Medicine from January 2023 to September 2023. The participants were given copper chelators (sodium dimercaptosulphonate (20 mg·kg-1), 4 courses of treatment, 32 days).
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Health Sciences Institute of China Medical University, Shenyang 110122, China. Electronic address:
Recently study has found a new form of copper-dependent death called cuproptosis, which differs from apoptosis, ferroptosis, and necrosis. The main process of cuproptosis is copper directly combined with lipid-acetylated proteins in the TCA cycle of mitochondrial response, leading to the aggregation of lipid-acetylated proteins and the loss of Fe-S cluster proteins, resulting in mitochondrial dysfunction, and eventually causing cell death. Previous studies demonstrated that an imbalance in copper homeostasis exacerbates the pathological progression of Alzheimer's disease (AD) through the induction of oxidative stress, inflammatory response, and the accumulation of Aβ deposition and tau protein hyperphosphorylation.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China.
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper.
View Article and Find Full Text PDFActa Biomater
January 2025
The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China. Electronic address:
Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong 226001, China. Electronic address:
Doxorubicin (DOX), a chemotherapeutic agent utilized in the management of cancer, provokes cardiotoxicity although effective remedy is lacking. Given that DOX provokes oxidative stress and cell death in cardiomyocytes, this study evaluated the possible involvement of cuproptosis, a newly identified form of cell death, in DOX-instigated cardiac remodeling and contractile dysfunction, alongside the impact of the heavy metal scavenger metallothionein (MT) on DOX cardiomyopathy. Cardiac-specific MT transgenic and wild-type (WT) mice were treated with DOX (5 mg/kg/wk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!