High-entropy layered double hydroxides tailor Pt electron state for promoting acidic hydrogen evolution reaction.

J Colloid Interface Sci

Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China. Electronic address:

Published: January 2025

Despite the advancement of the Pt-catalyzed hydrogen evolution reaction (HER) through oxophilic metal-hydroxide surface hybridization, its stability in acidic solutions remains unsatisfactory. This is primarily due to excessive aggregation of active hydrogen, which hinders subsequent hydrogen desorption, coupled with the poor operational stability of metal hydroxides. In this study, we have designed Pt nanoparticles-modified NiFeCoCuCr high-entropy layered double hydroxides (Pt/HE-LDH) that exhibit exceptional catalytic activity toward HER in acidic electrolytes. Our findings reveal that the built-in electric field (BIEF) between Pt and HE-LDH facilitates the charge redistribution at Pt/HE-LDH interface, driven by the difference in work function. Additionally, effective hydrogen spillover from Pt nanoparticles to HE-LDH bidirectionally optimizes the Gibbs free energy for hydrogen adsorption. Furthermore, the interactions among the multi-metal sites, along with high entropy-induced phase stability, contribute to superior stability in acidic electrolytes. This work not only presents a straightforward strategy for enhancing hydrogen spillover from Pt but also improves the durability of metal hydroxides under acidic HER conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.01.077DOI Listing

Publication Analysis

Top Keywords

high-entropy layered
8
layered double
8
double hydroxides
8
hydrogen evolution
8
evolution reaction
8
stability acidic
8
metal hydroxides
8
acidic electrolytes
8
hydrogen spillover
8
hydrogen
7

Similar Publications

High-entropy layered double hydroxides tailor Pt electron state for promoting acidic hydrogen evolution reaction.

J Colloid Interface Sci

January 2025

Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China. Electronic address:

Despite the advancement of the Pt-catalyzed hydrogen evolution reaction (HER) through oxophilic metal-hydroxide surface hybridization, its stability in acidic solutions remains unsatisfactory. This is primarily due to excessive aggregation of active hydrogen, which hinders subsequent hydrogen desorption, coupled with the poor operational stability of metal hydroxides. In this study, we have designed Pt nanoparticles-modified NiFeCoCuCr high-entropy layered double hydroxides (Pt/HE-LDH) that exhibit exceptional catalytic activity toward HER in acidic electrolytes.

View Article and Find Full Text PDF

High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.

View Article and Find Full Text PDF

The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.

View Article and Find Full Text PDF

Corrosion resistance, hardness and other mechanical properties of high entropy alloys are enhanced due to the addition of the proper elements. In this study, an equimolar powder mixture of AlNiCoCrFe was prepared as a coating material on plain carbon steel. It was produced by gas tungsten arc welding with the electrical currents of 90, 110 and 130 A.

View Article and Find Full Text PDF

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!