Progress of machine learning in the application of small molecule druggability prediction.

Eur J Med Chem

Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Published: January 2025

Machine learning (ML) has become an important tool for predicting the pharmaceutical properties of small molecules. Recent advancements in ML algorithms enable the rapid and accurate evaluation of solubility, activity, toxicity, pharmacokinetics, and other molecular properties through ML-based models. By conducting virtual screening of drug targets and elucidating drug-target protein interactions, researchers can conduct preliminary evaluations of the activity and safety of compounds from the ultra-large drug compound libraries, thereby accelerating the screening process for lead compounds. Moreover, ML leverages existing experimental data to train and generate new datasets, addressing the challenge of limited compounds and protein target data. This review provided a concise overview of ML applications in predicting small molecule properties, focusing on model construction principles, molecular feature selection, and other essential aspects. It also discussed the potential applications of ML in the screening of pharmaceutical small molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2025.117269DOI Listing

Publication Analysis

Top Keywords

machine learning
8
small molecule
8
small molecules
8
progress machine
4
learning application
4
small
4
application small
4
molecule druggability
4
druggability prediction
4
prediction machine
4

Similar Publications

Objective: The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.

Methods: This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm.

View Article and Find Full Text PDF

Objective: To assess performance of an algorithm for automated grading of surgery-related adverse events (AEs) according to Clavien-Dindo (C-D) classification.

Summary Background Data: Surgery-related AEs are common, lead to increased morbidity for patients, and raise healthcare costs. Resource-intensive manual chart review is still standard and to our knowledge algorithms using electronic health record (EHR) data to grade AEs according to C-D classification have not been explored.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Introduction: This study aimed to identify cognitive tests that optimally relate to tau positron emission tomography (PET) signal in the inferior temporal cortex (ITC), a neocortical region associated with early tau accumulation in Alzheimer's disease (AD).

Methods: We analyzed cross-sectional data from the harvard aging brain study (HABS) (= 128) and the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) study (= 393). We used elastic net regression to identify the most robust cognitive correlates of tau PET signal in the ITC.

View Article and Find Full Text PDF

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning.

Beilstein J Org Chem

January 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore.

The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimentation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been enabled by advances in lab automation and the introduction of machine learning algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!