SHMT2 regulates CD8+ T cell senescence via the reactive oxygen species axis in HIV-1 infected patients on antiretroviral therapy.

EBioMedicine

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. Electronic address:

Published: January 2025

Background: Although antiretroviral therapy (ART) effectively inhibits viral replication, it does not fully mitigate the immunosenescence instigated by HIV infection. Cellular metabolism regulates cellular differentiation, survival, and senescence. Serine hydroxymethyltransferase 2 (SHMT2) is the first key enzyme for the entry of serine into the mitochondria from the de novo synthesis pathway that orchestrates its conversion glutathione (GSH), a key molecule in neutralising ROS and ensuring the stability of the immune system. It remains incompletely understood whether SHMT2 is involved in the senescence of CD8+ T cells, crucial for immune vigilance against HIV.

Methods: HIV-infected individuals receiving antiretroviral therapy were enrolled in our study. SHMT2-siRNA was electroporated into T cells to disrupt the gene expression of SHMT2, followed by the quantification of mRNA levels of crucial serine metabolism enzymes using real-time PCR. Immunophenotyping, proliferation, cellular and mitochondrial function, and senescence-associated signalling pathways were examined using flow cytometry in CD8+ T cell subsets.

Findings: Our findings revealed that CD8+ T cells in HIV-infected subjects are inclined towards senescence, and we identified that SHMT2, a key enzyme in serine metabolism, plays a role in CD8+ T cell senescence. SHMT2 can regulate glutathione (GSH) synthesis and protect mitochondrial function, thus effectively controlling intracellular reactive oxygen species (ROS) levels. Moreover, SHMT2 significantly contributes to averting immunosenescence and sustaining CD8+ T cell competence by modulating downstream DNA damage and phosphorylation cascades in pathways intricately linked to cellular senescence. Additionally, our study identified glycine can ameliorate CD8+ T cell senescence in HIV-infected individuals.

Interpretation: Decreased SHMT2 levels in HIV-infected CD8+ T cells affect ROS levels by altering mitochondrial function and GSH content. Increased ROS levels activate senescence-related signalling pathways in the nucleus. However, glycine supplementation counteracts these effects and moderates senescence.

Funding: This study was supported by grants from the National Key R&D Program of China (2021YFC2301900-2021YFC2301901), National Natural Science Foundation of China (82372240), and Department of Science and Technology of Liaoning Province Project for the High-Quality Scientific and Technological Development of China Medical University (2022JH2/20200074).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2024.105533DOI Listing

Publication Analysis

Top Keywords

cd8+ cell
20
cell senescence
12
antiretroviral therapy
12
cd8+ cells
12
mitochondrial function
12
ros levels
12
shmt2
8
cd8+
8
reactive oxygen
8
oxygen species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!