Multiple Sclerosis (MS) is a heterogeneous autoimmune-mediated disorder affecting the central nervous system, commonly manifesting as fatigue and progressive limb impairment. This can significantly impact quality of life due to weakness or paralysis in the upper and lower limbs. A Brain-Computer Interface (BCI) aims to restore quality of life through control of an external device, such as a wheelchair. However, the limited BCI research in people with MS has been confined to exploring the P300 response and brain signals associated with attempted movement. The current study aims to expand the MS-BCI literature by highlighting the feasibility of decoding MS imagined movement. Approach. We collected electroencephalography (EEG) data from eight participants with various symptoms of MS and ten neurotypical control participants. Participants made imagined movements of the hands and feet as directed by a go no-go protocol. Binary regularised linear discriminant analysis was used to classify imagined movement vs. rest and vs. movement at individual time-frequency points. The frequency bands which provided the maximal accuracy, and the associated latency, were compared. Main Results. In all MS participants, the classification algorithm achieved above 70% accuracy in at least one imagined movement vs. rest classification and most movement vs. movement classifications. There was no significant difference between classification of limbs with weakness or paralysis to neurotypical controls. Both the MS and control groups possessed decodable information within the alpha (7-13 Hz) and beta (16-30 Hz) bands at similar latency. Significance. This study is the first to demonstrate the feasibility of decoding imagined movements in people with MS. As an alternative to the P300 response, motor imagery-based control of a BCI may also be combined with existing motor imagery therapy to supplement MS rehabilitation. These promising results merit further long term BCI studies to investigate the effect of MS progression on classification performance. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/adaa1d | DOI Listing |
J Neural Eng
January 2025
Department of Biomedical Engineering, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, AUSTRALIA.
Multiple Sclerosis (MS) is a heterogeneous autoimmune-mediated disorder affecting the central nervous system, commonly manifesting as fatigue and progressive limb impairment. This can significantly impact quality of life due to weakness or paralysis in the upper and lower limbs. A Brain-Computer Interface (BCI) aims to restore quality of life through control of an external device, such as a wheelchair.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America.
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles.
View Article and Find Full Text PDFJ Neural Eng
January 2025
ECE & Neurology, University of Texas at Austin, 301 E. Dean Keeton St. C2100, Austin, Texas, 78712-1139, UNITED STATES.
Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China.
Background: Motor imagery (MI) plays an important role in brain-computer interfaces, especially in evoking event-related desynchronization and synchronization (ERD/S) rhythms in electroencephalogram (EEG) signals. However, the procedure for performing a MI task for a single subject is subjective, making it difficult to determine the actual situation of an individual's MI task and resulting in significant individual EEG response variations during motion cognitive decoding.
Methods: To explore this issue, we designed three visual stimuli (arrow, human, and robot), each of which was used to present three MI tasks (left arm, right arm, and feet), and evaluated differences in brain response in terms of ERD/S rhythms.
J Neural Eng
January 2025
West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
. Brain-computer interface(BCI) is leveraged by artificial intelligence in EEG signal decoding, which makes it possible to become a new means of human-machine interaction. However, the performance of current EEG decoding methods is still insufficient for clinical applications because of inadequate EEG information extraction and limited computational resources in hospitals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!