The International Convention for the Prevention of Pollution from Ships (MARPOL) has prohibited ships using of HFO in ports. For this reason, during in port operations, different strategies must be adopted, based on the use of cleaner fuels or on the transition towards marine electrical technologies. In this context, the purpose of the present research is to analyze and compare, from an environmental and economic points of view, different technical solutions for in port operations. Four alternative configurations have been proposed: Solution 1, Battery & Internal Combustion Engine (ICE); Solution 2, Battery & Fuel Cell (FC) with yellow hydrogen; Solution 3, Battery & Fuel Cell (FC) with green hydrogen, and Solution 4, Battery & Cold Ironing (CI). From the environmental perspective, the Well-to-Waves (WTW) analysis has been carried out; from the economic point of view, the investment costs and the operating costs have been calculated and compared. Moreover, an economic performance indicator, the Economic-Environmental Correlation specific Index (ECI), has been introduced and evaluated. Results highlighted that from environmental point of view, the best solution is achieved implementing the Battery & Fuel Cell (FC) solution. On the other hand, the Battery & Cold Ironing (CI) solution represents the best solution from the economic point of view, allowing to obtain the lowest ECI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.178377DOI Listing

Publication Analysis

Top Keywords

solution battery
16
battery fuel
12
fuel cell
12
point view
12
technical solutions
8
port operations
8
solution
8
hydrogen solution
8
battery cold
8
cold ironing
8

Similar Publications

The International Convention for the Prevention of Pollution from Ships (MARPOL) has prohibited ships using of HFO in ports. For this reason, during in port operations, different strategies must be adopted, based on the use of cleaner fuels or on the transition towards marine electrical technologies. In this context, the purpose of the present research is to analyze and compare, from an environmental and economic points of view, different technical solutions for in port operations.

View Article and Find Full Text PDF

All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals.

View Article and Find Full Text PDF

The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications.

View Article and Find Full Text PDF

Magnesium chloride-infused chitosan-poly (vinyl alcohol) electrolyte films: A versatile solution for energy storage devices.

Int J Biol Macromol

January 2025

Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.

The potential of advanced energy storage devices lies in using solid biodegradable polymer electrolytes. This study is focused on a solid blend polymer electrolyte (SBPE) film based on chitosan (CS)-poly (vinyl alcohol) (PVA) blend matrix doped with magnesium chloride (MgCl) salt via solution casting. The interaction of MgCl was verified via X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

In this paper, a hybrid optimization method based on a technique for order of preference by similarity to an ideal solution (TOPSIS) is used for the simultaneous site selection and sizing of a hybrid photovoltaic (PV) water pumping/diesel generator energy system. Various sites in Iran are analyzed for the establishment of the photovoltaic water pumping power plants. Key geographical and climatic criteria are used for optimal site selection across different sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!