Arsenic in the environment, such as sodium arsenic (NaAsO), is a frequently occurring hazard that has been linked to nonalcoholic steatohepatitis (NASH). Our prior research established the involvement of ferroptosis in arsenic-induced NASH, but the precise underlying mechanisms remain elusive. Here, we found that exposure to NaAsO had a suppressive effect on the expression of CDGSH iron-sulfur domain-containing protein 2 (CISD2) at the protein and gene levels, and overexpression of CISD2 inhibited NaAsO-induced ferroptosis and NASH. Additionally, administration of NaAsO to hepatocytes triggered mitochondrial dysfunction, manifesting as the release of cytochrome c, impairment of the mitochondrial respiratory chain, and reduction in ATP synthesis. However, these adverse effects were alleviated through overexpression of CISD2. Intracellular iron redistribution was induced by overexpression of CISD2 and inhibited NaAsO-induced ferroptosis. This inhibition was characterized by a reduction in cytoplasmic iron levels and an increase in mitochondrial iron levels. Our study demonstrated that NaAsO induced intracellular iron reorganization and mitochondrial dysfunction through CISD2 inhibition, leading to ferroptosis and NASH. This may provide a novel means of treatment of nonalcoholic fatty liver disease triggered by environmental factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2025.117694 | DOI Listing |
Crit Care
January 2025
Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
Background: Both quantitative and qualitative aspects of muscle status significantly impact clinical outcomes in critically ill patients. Comprehensive monitoring of baseline muscle status and its changes is crucial for risk stratification and management optimization. However, repeatable and accessible indicators are lacking.
View Article and Find Full Text PDFCommun Biol
January 2025
Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China. Electronic address:
An imbalance in iron homeostasis contributes to mitochondrial dysfunction, which is closely linked to the pathogenesis of various diseases. Herein, we developed a nanosensor for detecting mitochondrial ferrous ions in vitro and in vivo. A poly(N-isopropylacrylamine)-coacrylic acid nanohydrogel was synthesized, and ferrous ions were detected using the fluorescent probe FeRhonox-1 embedded within it.
View Article and Find Full Text PDFTrop Med Health
January 2025
Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Background: The Anopheles culicifacies complex is one of the most important malaria vectors in Southeast Asia and Southeastern Iran. Although the sibling species within this complex are morphologically indistinguishable, they differ significantly in their disease transmission potential, blood-feeding behaviour, and other biological traits. Cytogenetic and chromosomal studies have identified five sibling species within this complex: A, B, C, D, and E.
View Article and Find Full Text PDFChin Med
January 2025
Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!