Transcriptome response in a marine copepod under multigenerational exposure to ocean warming and Ni at an environmentally realistic concentration.

Ecotoxicol Environ Saf

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Published: January 2025

Due to anthropogenic activities, coastal areas have been challenged with multi-stresses such as ocean warming and nickel (Ni) pollution. Currently, studies have concerned the combined effects of Ni and warming in marine organisms at the phenotypic level; however, the underlying molecular mechanisms are poorly known. In this study, a marine copepod Tigriopus japonicus was maintained under warming (+ 4℃) and an environmentally realistic level of Ni (20 μg/L) alone or combined for three generations (F0-F2). Transcriptome analysis was performed for the F2 individuals. We found that the gene transcripts of copepods were predominantly down-regulated after Ni and warming exposure. Based on the results of GO and KEGG analysis, chitin metabolism, detoxification, antioxidant, apoptosis, and energy metabolism were screened in this study. Among the above functions, the combined exposure enriched more differential expression genes and had a larger fold change compared to Ni exposure alone, suggesting that warming increased the negative effect of Ni on marine copepods from a molecular perspective. Specifically, the combined exposure exacerbated the down-regulation of defense, apoptosis, xenobiotic efflux, GSH system, and energy metabolism, as well as the up-regulation of detoxification and peroxidase system. Overall, this study indicates that both ocean warming and Ni pollution adversely affect the marine copepod T. japonicus from multigenerational transcriptome analysis, especially warming increased Ni toxicity to marine copepods, and our results also provide references to the mechanism concerning the effects of Ni and warming on marine copepods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117613DOI Listing

Publication Analysis

Top Keywords

marine copepod
12
ocean warming
12
marine copepods
12
warming
9
environmentally realistic
8
effects warming
8
warming marine
8
transcriptome analysis
8
energy metabolism
8
combined exposure
8

Similar Publications

Nano-plastics (NPs) and heavy metals have attracted growing scientific attention because of both pollutants' wide distribution and ecotoxicity. However, the long-term combined toxicity of NPs and mercury (Hg) on planktonic copepods, a crucial presence in marine environments, is unknown. Here, our study aimed to investigate the multigenerational phenotypic responses of the planktonic copepod Pseudodiaptomus annandalei to polystyrene NPs (about 50 nm) and Hg (alone or combined) at environmentally realistic concentrations (23 μg/L for NPs and 1 μg/L for Hg), and the underlying molecular mechanisms were explored.

View Article and Find Full Text PDF

'Neither here nor there'? Meiofauna as an effective tool to evaluate the impacts of the 2019 mysterious oil spill in a Northeast Brazil coral reef.

Mar Pollut Bull

January 2025

Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil; Universidade Federal de Pernambuco, Department of Zoology, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil. Electronic address:

During the last half of 2019, the Northeast coast of Brazil suffered from an extensive oil spill of unknown origin, and marine organisms in those areas were subjected to significant impacts. In situations like this, the contaminant effects can persist for varying periods. Oil contaminants, such as polycyclic aromatic hydrocarbons (PAHs), generally reduce taxa's abundance and diversity in benthic communities in areas with greater exposure to chemical components.

View Article and Find Full Text PDF

Copepod Lipidomics: Fatty Acid Substituents of Structural Lipids in , a Dominant Species in the Food Chain of the Apalachicola Estuary of the Gulf of Mexico.

Life (Basel)

December 2024

Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA.

Zooplanktonic copepods represent a major biological mass in the marine food chain that can be affected by climate change. Monitoring the health of this critical biomass is essential for increasing our understanding of the impact of environmental changes on marine environments. Since the lipidomes of marine organisms are known to adapt to alterations in pH, temperature, and availability of metabolic precursors, lipidomics is one technology that can be used for monitoring copepod adaptations.

View Article and Find Full Text PDF

Introduction: Copepods of the genus Colobomatus Hesse, 1873 are parasites associated with subcutaneous spaces of marine fish. To date, around 76 species of the genus have been described in marine ecosystems, but few species have been recorded in the South Atlantic Ocean.

Methods: One hundred and eight specimens of Co.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!