Plague is a rare, potentially fatal flea-borne zoonosis endemic in the western United States. A previous model described interannual variation in human cases based on temperature and lagged precipitation. We recreated this model in northeastern Arizona (1960-1997) to evaluate its capacity to predict recent cases (1998-2022). In recreating the original model, we found that future instead of concurrent temperature had inadvertently been used for the presented fit. Prediction from our revised models with lagged precipitation and temporally plausible temperature relationships aligned with low observed cases in 1998-2022. Elevated precipitation associated with high cases in historical data (>6 inches combined precipitation over two previous springs) was only observed once in the last quarter century, so we could not assess if these conditions were reliably associated with elevated (four or more) human plague cases. Observed weather conditions were similar to those previously associated with low (fewer than or equal to two) case counts, suggesting "baseline" conditions in the last quarter century.

Download full-text PDF

Source
http://dx.doi.org/10.4269/ajtmh.24-0255DOI Listing

Publication Analysis

Top Keywords

interannual variation
8
variation human
8
human plague
8
plague cases
8
united states
8
lagged precipitation
8
cases 1998-2022
8
quarter century
8
cases
6
revisiting relationship
4

Similar Publications

Forage crop rotations including grasslands, common in dairy systems, are known to ensure good productivity and limit the decrease of soil organic matter frequently observed in permanent arable land. A dataset was built to compile data from the Kerbernez long-term experiment, conducted in Brittany(France) from 1978 to 2005. This experiment compared the effect of different forage crop rotations fertilized with ammonium nitrate and/or slurry, with or without grassland, on forage production (quantity, quality) and changes in soil physio-chemical characteristics.

View Article and Find Full Text PDF

Ethiopia's agriculture is mostly dependent on rain, though the rainfall distribution and amount are varied in spatiotemporal context. The study was conducted to analyze the distribution, trends, and variability of monthly, seasonal, and annual rainfall data over the Wollo area from 1981 to 2022. To accomplish this, the study utilized the Climate Hazards Group Infrared Precipitation with Stations version two (CHIRPS-v2) data.

View Article and Find Full Text PDF

Central Asia is an ecologically fragile arid zone and a typical mixed salt‒sand region. The socioeconomic and ecological problems attributed to the shrinking of the Aral Sea in Central Asia are notable concerns within the international community. In this study, the characteristics of salt dust aerosols from the Aral Sea were analysed to explore their interannual variation characteristics and analyse the spatial and temporal distributions of salt dust sources and transport and dispersion pathways.

View Article and Find Full Text PDF

Tracking individual seed fate confirms mainly antagonistic interactions between rodents and European beech.

Biol Lett

January 2025

Department of Ecosystem Management, Climate, and Biodiversity, Institute of Wildlife Biology and Game Management, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria.

Food-hoarding granivores act as both predators and dispersers of plant seeds, resulting in facultative species interactions along a mutualism-antagonism continuum. The position along this continuum is determined by the positive and negative interactions that vary with the ratio between seed availability and animal abundance, particularly for mast-seeding species with interannual variation and spatial synchrony of seed production. Empirical data on the entire fate of seeds up to germination and the influence of rodents on seed survival is rare, resulting in a lack of consensus on their position along the mutualism-antagonism continuum.

View Article and Find Full Text PDF

Rapid urbanization has significantly altered surface landscape configurations, leading to complex urban climates. While much attention has been focused on impervious surfaces' impact on extreme precipitation, a critical gap remains in understanding how various 2D urban landscape components influence extreme precipitation across different durations. Through an analysis of the non-stationarity and spatiotemporal variations in extreme precipitation across the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) from 1990 to 2020, we constructed the non-stationary Generalized Additive Models for Location Scale and Shape (GAMLSS) model by introducing six urban landscape structural metrics as explanatory variables for each of the 27 meteorological stations in the GBA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!