Colorimetric Xylenol Orange: A Long-Buried Aggregation-Induced Emission Dye and Restricted Rotation for Dual-Mode Sensing of pH and Metal Ions.

Anal Chem

Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

Published: January 2025

As the third largest class of dyes in the world, triphenylmethane dyes are widely applied in colorimetric sensing. However, triphenylmethane dyes are commonly nonfluorescent, which limits their sensing applications. It is worthwhile to study the fluorescence off/on control of triphenylmethane dyes and promote the applications of triphenylmethane dyes in sensing technology. In this work, the fluorescence off/on control was investigated by employing a triphenylmethane dye xylenol orange (XO), which is a colorimetric indicator for pH and metal ions. It was discovered that XO exhibited aggregation-induced emission (AIE), and thus, its fluorescence off/on was controlled by intramolecular rotation. This discovery broadens the optical properties of XO and transforms XO from a colorimetric dye to a colorimetric/fluorescent dual-mode AIE dye. It was further verified that the AIE-based fluorescence off/on control improved the sensing performance of XO. A bovine serum albumin-based rotation suppression method was applied to enhance the fluorescence emission of XO for colorimetric/fluorescent dual-mode indication of pH and metal ions. Compared with colorimetric sensing, colorimetric/fluorescent dual-mode sensing exhibits higher accuracy, ascribed to the self-validation effect. This work uncovers AIE-based fluorescence off/on control of triphenylmethane dyes and breathes new life into the sensing applications of triphenylmethane dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c05819DOI Listing

Publication Analysis

Top Keywords

triphenylmethane dyes
24
fluorescence off/on
20
off/on control
16
metal ions
12
colorimetric/fluorescent dual-mode
12
xylenol orange
8
aggregation-induced emission
8
sensing
8
dual-mode sensing
8
colorimetric sensing
8

Similar Publications

Colorimetric Xylenol Orange: A Long-Buried Aggregation-Induced Emission Dye and Restricted Rotation for Dual-Mode Sensing of pH and Metal Ions.

Anal Chem

January 2025

Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

As the third largest class of dyes in the world, triphenylmethane dyes are widely applied in colorimetric sensing. However, triphenylmethane dyes are commonly nonfluorescent, which limits their sensing applications. It is worthwhile to study the fluorescence off/on control of triphenylmethane dyes and promote the applications of triphenylmethane dyes in sensing technology.

View Article and Find Full Text PDF
Article Synopsis
  • Dye wastewater pollution, particularly from aniline blue, is a significant environmental issue due to its toxic properties and difficulty in treatment.
  • This study investigates the enzyme SDRz found in strain CT1, which effectively degrades aniline blue through specific enzymatic mechanisms and degradation pathways.
  • Functional tests showed that SDRz is essential for this degradation, with the enzyme demonstrating substantial activity and efficiency in breaking down aniline blue into less harmful metabolites.
View Article and Find Full Text PDF

Photothermal degradation of triphenylmethane dye wastewater by FeO@C-laccase.

Int J Biol Macromol

December 2024

School of Chemical and Environmental Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu 241000, China. Electronic address:

The degradation of synthetic dye wastewater is important for green chemistry and cost-effectiveness. In this study, we developed FeO@C-laccase (laccase immobilized on FeO@C nanoparticles) for photothermal degradation of high concentration of triphenylmethane dye wastewater. The FeO@C-laccase possessed superior pH and thermal stabilities, as well as excellent tolerance to organic solvents, inhibitors, and metal ions.

View Article and Find Full Text PDF

Triphenylmethyl-based compounds such as rhodamines and fluoresceine representing an old and well-known class of triphenylmethane dyes, are widely used in fluorescent labeling of bioimaging. Inspired by ultralong room temperature phosphorescence of triphenylphosphine derivatives, herein we report a methoxy substituted triarylmethanol ((4-methoxyphenyl)diphenylmethanol, LJW-1) exhibits ultralong room temperature phosphorescence (RTP) under ambient condition with afterglows of about 7 seconds. Its multiple C-H ⋅ ⋅ ⋅ π intermolecular interactions, C-H ⋅ ⋅ ⋅ O intermolecular interactions, hydrogen bond and π-π interactions are beneficial for forming rigid environment in the aggregated state which is evidently an important factor in the appearance of excellent RTP.

View Article and Find Full Text PDF

Characterization and Degradation of Triphenylmethane Dyes and Their Leuco-Derivatives by Heterologously Expressed Laccase From Coprinus cinerea.

Cell Biochem Funct

September 2024

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.

Article Synopsis
  • Laccase is an enzyme that can break down various organic substances, and this study focused on optimizing its gene for better production using the Pichia pastoris system.
  • A new gene named Lcc1I was created and successfully expressed, yielding significant amounts of recombinant laccase with high activity levels under specific conditions.
  • The engineered laccase showed promising results in degrading harmful dyes, indicating potential for broader applications in environmental cleanup efforts against pollution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!