Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Published: January 2025

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA. It was confirmed that an appropriate centrifugal force could be utilized to overcome the electrostatic repulsion between AuNPs and PDA. Together with the adhesion force of PDA, AuNPs can therefore be uniformly and densely deposited on the MN substrate. The AuNPs@PDA@PMMA-MN had an enhancement factor of up to 1.74 × 10 for R6G. Furthermore, a MN sensor for the selective detection of putrescine and cadaverine was successfully constructed by modifying 4-mercaptobenzaldehyde (4-MBA) on AuNPs@PDA@PMMA-MN substrates. This sensor could quantitatively detect putrescine and cadaverine in meat. It has been successfully applied to the in situ detection of putrescine and cadaverine in real meat samples. The AuNPs@PDA@PMMA-MN SERS sensor has the advantages of facile fabrication, high sensitivity, high specificity, and online, in situ detection capability. It is expected to have applications in food quality testing, environmental monitoring, and disease diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c02556DOI Listing

Publication Analysis

Top Keywords

putrescine cadaverine
12
sers sensors
8
food safety
8
sers sensor
8
aunps pda
8
detection putrescine
8
situ detection
8
sers
5
polydopamine-mediated centrifugal
4
centrifugal force-driven
4

Similar Publications

Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

January 2025

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.

View Article and Find Full Text PDF

Given the widespread industrial and domestic use of probiotic blends based on combinations of lactic acid bacteria (LAB) and yeasts to produce fermented foods or beverages that are supposed to provide health benefits, this study aimed to generate knowledge and concepts on biologically relevant activities, metabolism and metabolic interactions in yeast/LAB communities. For this, the postbiotic capabilities of three probiotic candidates, including two lactic acid bacteria (i.e.

View Article and Find Full Text PDF

Characterization of key off-odor compounds in grass carp cube formed during room temperature storage by molecular sensory science approach.

Food Chem X

December 2024

National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.

Flavor is a significant factor in determining the popularity of freshwater fish. However, freshwater fish can easily spoil during storage, producing an unpleasant odor. Little research has determined the changes in key off-odor compounds (OOCs) in freshwater fish during storage.

View Article and Find Full Text PDF

Salt reduction strategies for dry cured meat products: The use of KCl and microencapsulated spices and aromatic plant extracts.

Meat Sci

March 2025

CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal. Electronic address:

Article Synopsis
  • The World Health Organization aims to reduce salt intake by 30% by 2025, prompting this study to explore the effects of replacing 33% of NaCl with KCl and microencapsulated spices in a dry-cured meat sausage.
  • The formulations tested (Control, F1, F2, F3) maintained microbial safety, showing no growth of harmful bacteria while lactic acid bacteria remained stable.
  • Consumer preference indicated that F1, with the adjusted salt levels, was favored as the ideal saltiness for potential market launch, confirming that significant NaCl replacement can be done without compromising taste or safety.
View Article and Find Full Text PDF

An isolated salt-tolerant Tetragenococcus halophilus 2MH-3 improved the volatile flavor of low-salt fermented fish sauce by regulating the microbial community.

Food Res Int

November 2024

Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China. Electronic address:

The application of low-salt fish sauce is limited by its tendency to spoil easily and inadequate flavor generation. Herein, a salt-tolerant Tetragenococcus halophilus 2MH-3 strain with strong abilities of enzyme production and biogenic amine degradation was utilized as a starter for the production of low-salt fish sauce. Bacterial community analysis revealed discrepancies in microbiota between low-salt fish sauces fermented with (Th group) or without 2MH-3 (LF group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!