Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring.

ACS Nano

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Published: January 2025

Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances. The special separation-sensing strategy imparts functional composite membranes with a high sensitivity of 113 mV dec for potassium detection. The excellent mechanical properties and conformability of the Kevlar aramid nanofiber layer bring well-wearing performances to realize continuous wireless sweat monitoring. The recognition between functional molecules and target ions is proved at the molecular level in detail in the article. The replacement of functional molecules proves the universality of the strategy for performance enhancement in intricate biofluid analysis systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c14660DOI Listing

Publication Analysis

Top Keywords

sweat monitoring
16
olfactory-inspired separation-sensing
8
separation-sensing nanochannel-based
8
wireless sweat
8
functional molecules
8
sweat
6
monitoring
5
nanochannel-based electronics
4
electronics wireless
4
monitoring human
4

Similar Publications

The integration of hydrogen-bonded organic frameworks (HOFs) with flexible electronic technologies offers a promising strategy for monitoring detailed health information, owing to their inherent porosity, excellent biocompatibility, and tunable catalytic capabilities. However, their application in wearable and real-time health monitoring remains largely unexplored, primarily due to the mechanical mismatch between the traditionally fragile HOFs particles and the softness of human skin. Herein, this study demonstrates an epidermal biosensor that maintains reliable sensing capability even under extreme deformation and complex environmental conditions by integrating HOFs films with wavy bioelectrodes.

View Article and Find Full Text PDF

Rationale: Local anesthesia is a widely used technique for emergency wound closure, with lidocaine among the most commonly employed local anesthetics. Allergic reactions to lidocaine are rare, with anaphylaxis being even more uncommon.

Patient Concerns And Diagnosis: This report describes a 72-year-old male patient who presented with a right foot injury and underwent wound suturing under lidocaine local anesthesia.

View Article and Find Full Text PDF

Next-Generation Potentiometric Sensors: A Review of Flexible and Wearable Technologies.

Biosensors (Basel)

January 2025

Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA.

In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors.

View Article and Find Full Text PDF

The early monitoring of cardiovascular biomarkers is essential for the prevention and management of some cardiovascular diseases. Here, we present a novel, compact, and highly integrated skin electrode as a mechanical-electrochemical dual-model E-skin, designed for the real-time monitoring of heart rate and sweat ion concentration, two critical parameters for assessing cardiovascular health. As a pressure sensor, this E-skin is suitable for accurate heart rate monitoring, as it exhibits high sensitivity (25.

View Article and Find Full Text PDF

Recent studies have shown that lactate is a molecule that plays an indispensable role in various physiological cellular processes, such as energy metabolism and signal transductions related to immune and inflammatory processes. For these reasons, interest in its detection using biosensors for non-invasive analyses of sweat during sports activity and in clinical reasons assessments has increased. In this minireview, an in-depth study was carried out on biosensors that exploited using electrochemical methods and innovative nanomaterials for lactate detection in sweat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!