The mechanisms of NO reduction by CO over nitrogen-doped graphene (N-graphene)-supported single-atom Ni catalysts in the presence of O, HO, CO, and SO have been studied via density functional theory (DFT) modeling. The catalyst is represented by a single Ni atom bonded to four N atoms on N-graphene. Several alternative reaction pathways, including adsorption of NO on the Ni site, direct reduction of NO by CO, decomposition of NO to NO followed by reduction of NO to N, formation of active oxygen radical O*, and reduction of O* by CO, were hypothesized and the energy barrier corresponding to each of the reaction steps was calculated using DFT. The most probable pathway was found to be that NO adsorbed on the Ni site decomposes via the Langmuir-Hinshelwood mechanism to form NO and subsequently N, leaving an active oxygen radical (O*) on the surface, which is then reduced by CO. The large adsorption energy of NO on the Ni site results in strong resistance to CO, SO, O, and water vapor. The activation energy of NO reduction to N was found to be larger than those of NO decomposition to NO and active oxygen radical reduction by CO, illustrating that the step of NO reduced to N is the rate-controlling step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c03571 | DOI Listing |
Physiol Rep
January 2025
Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
Maximal oxygen uptake (VOmax) in healthy subjects is primarily limited by systemic oxygen delivery. In chronic kidney disease (CKD), VOmax is potentially reduced by both central and peripheral factors. We aimed to investigate the effect on VOpeak of adding arm exercise to leg exercise.
View Article and Find Full Text PDFBiol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.
Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Departemnt of Gynaecology and Obstetrics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130041, Jilin, China.
Background: The aim of this study was to investigate the role of miR-361-5p (a tumor suppressor) in regulating granulosa cell function by targeting SLC25A24, a key mitochondrial protein, to uncover potential therapeutic targets for diminished ovarian reserve (DOR).
Methods: This study included patients undergoing assisted reproductive technology treatment at our hospital. Granulosa cells were isolated from follicular fluid, and KGN cells were used for in vitro experiments.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!