This study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons. For the most challenging task, the 30-minute ahead forecasts, the model achieved a wind speed Mean Absolute Error (MAE) of 0.78 m/s and a wind direction MAE of 33.06°. Furthermore, the use of Gaussian noise concatenation to both input and label training data yielded the most consistent results. A case study further validated the model's efficacy, with MAE values below 0.43 m/s for wind speed and between 33.93° and 35.03° for wind direction across different forecast horizons. This approach shows that combining strategically deployed sensor networks with machine learning techniques offers improvements in wind nowcasting for airports in complex environments, possibly enhancing operational efficiency and safety.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316548PLOS

Publication Analysis

Top Keywords

wind nowcasting
12
wind speed
12
wind
9
high-resolution wind
8
deep learning
8
learning techniques
8
30-minute ahead
8
forecast horizons
8
m/s wind
8
wind direction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!