The mosquito evolves two types of prophenoloxidases with diversified functions.

Proc Natl Acad Sci U S A

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.

Published: January 2025

Insect phenoloxidase, presented as an inactive precursor prophenoloxidase (PPO) in hemolymph, catalyzes melanin formation, which is involved in wound healing, pathogen killing, reversible oxygen collection during insect respiration, and cuticle and eggshell formation. Mosquitoes possess 9 to 16 PPO members across different genera, a number that is more than that found in other dipteran insects. However, the reasons for the redundancy of these PPOs and whether they have distinct biochemical properties and physiological functions remain unclear. Phylogenetic analysis confirmed that PPO6 (Aea-PPO6) is an ortholog to PPOs in other insect species, classified as the classical insect type, while other Aea-PPOs are unique to Diptera, herein referred to as the dipteran type here. We characterized two Aea-PPO members, Aea-PPO6, the classical insect type, and Aea-PPO10, a dipteran type, which exhibit distinct substrate specificities. By resolving Aea-PPO6's crystal structure and creating a chimera protein (Aea-PPO6-cm) with Motif 1 (GDGPDSVVR) from Aea-PPO10, we identified the motif that determines PPO substrate specificity. In vivo, loss of Aea-PPO6 led to larval lethality, while Aea-PPO10 was involved in development, pigmentation, and immunity. Our results enhance the understanding of the functional diversification of mosquito PPOs.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2413131122DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761970PMC

Publication Analysis

Top Keywords

classical insect
8
insect type
8
dipteran type
8
insect
5
mosquito evolves
4
evolves types
4
types prophenoloxidases
4
prophenoloxidases diversified
4
diversified functions
4
functions insect
4

Similar Publications

Dynamics and regulatory roles of RNA mA methylation in unbalanced genomes.

Elife

January 2025

Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.

-methyladenosine (mA) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of mA components appears in a variety of human diseases. RNA mA modification in has proven to be involved in sex determination regulated by and may affect X chromosome expression through the MSL complex.

View Article and Find Full Text PDF

Background: Synergists reduce insecticide metabolism in mosquitoes by competing with insecticides for the active sites of metabolic enzymes, such as cytochrome P450s (CYPs). This increases the availability of the insecticide at its specific target site. The combination of both insecticides and synergists increases the toxicity of the mixture.

View Article and Find Full Text PDF

Achieving a comprehensive understanding of animal intelligence demands an integrative approach that acknowledges the interplay between an organism's brain, body and environment. Insects, despite their limited computational resources, demonstrate remarkable abilities in navigation. Existing computational models often fall short in faithfully replicating the morphology of real insects and their interactions with the environment, hindering validation and practical application in robotics.

View Article and Find Full Text PDF

The transition to flying insects: lessons from evo-devo and fossils.

Curr Opin Insect Sci

January 2025

Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 00 Praha 2, Czech Republic. Electronic address:

Insects are the only arthropod group to achieve powered flight, which facilitated their explosive radiation on land. It remains a significant challenge to understand the evolutionary transition from non-flying (apterygote) to flying (pterygote) insects due to the large gap in the fossil record. Under such situation, ontogenic information has historically been used to compensate fossil evidence.

View Article and Find Full Text PDF

Background: In this study, we investigated the genetic variability and population structure of the New World screwworm fly Cochliomyia hominivorax. We tested the hypothesis that the species exhibits a center-periphery distribution of genetic variability, with higher genetic diversity in central populations (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!