One critical aspect of cell proliferation is increased nucleotide synthesis, including pyrimidines. Pyrimidines are synthesized through de novo and salvage pathways. Prior studies established that the mammalian target of rapamycin complex 1 (mTORC1) promotes pyrimidine synthesis by activating the de novo pathway for cell proliferation. However, the involvement of mTORC1 in regulating the salvage pathway remains unclear. Here, we report that mTORC1 controls the half-life of uridine cytidine kinase 2 (UCK2), the rate-limiting enzyme in the salvage pathway. Specifically, UCK2 is degraded via the CTLH-WDR26 E3 complex during mTORC1 inhibition, which is prevented when mTORC1 is active. We also find that UCK1, an isoform of UCK2, affects the turnover of UCK2 by influencing its cellular localization. Importantly, altered UCK2 levels through the mTORC1-CTLH E3 pathway affect pyrimidine salvage and the efficacy of pyrimidine analog prodrugs. Therefore, mTORC1-CTLH E3-mediated degradation of UCK2 adds another layer of complexity to mTORC1's role in regulating pyrimidine metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2024.115179 | DOI Listing |
Non-peptide ligands (NPLs), including lipids, amino acids, carbohydrates, and non-peptide neurotransmitters and hormones, play a critical role in ligand-receptor-mediated cell-cell communication, driving diverse physiological and pathological processes. To facilitate the study of NPL-dependent intercellular interactions, we introduce MetaLigand, an R-based and web-accessible tool designed to infer NPL production and predict NPL-receptor interactions using transcriptomic data. MetaLigand compiles data for 233 NPLs, including their biosynthetic enzymes, transporter genes, and receptor genes, through a combination of automated pipelines and manual curation from comprehensive databases.
View Article and Find Full Text PDFOncogene
January 2025
Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Overexpression of uridine-cytidine kinase 2 (UCK2), a key enzyme in the pyrimidine salvage pathway, is implicated in human cancer development, while its regulation under nutrient stress remains to be investigated. Here, we show that under glucose limitation, AMPK phosphorylates glycinamide ribonucleotide formyltransferase (GART) at Ser440, and this modification facilitates its interaction with UCK2. Through its binding to UCK2, GART generates tetrahydrofolate (THF) and thus inhibits the activity of integrin-linked kinase associated phosphatase (ILKAP) for removing AKT1-mediated UCK2-Ser254 phosphorylation under glucose limitation, in which dephosphorylation of UCK2-Ser254 tends to cause Trim21-mediated UCK2 polyubiquitination and degradation.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China. Electronic address:
Microbial compartment provides a promising approach for achieving high-valued chemical biosynthesis from renewable feedstock. However, volatile precursor could be utilized by pathway enzyme, which may hinder and adverse the cascade catalysis within microbial cell factory. Here, a customizable compartment was developed for pathway sequestration using spatially assembled cascade catalysis reaction.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada.
Background: The ideal timing of androgen deprivation therapy (ADT) for patients with biochemical recurrence (BCR) of prostate cancer (PCa) remains controversial due to its side effects and uncertain impact on survival outcomes.
Methods: We performed a review of the current literature by comprehensively searching the PubMed, Embase, and Cochrane databases to determine the optimal timing of ADT initiation after biochemical recurrence. We selected 26 studies including systematic reviews, randomized controlled trials (RCTs), and retrospective studies, while also reviewing practice guidelines.
Antioxidants (Basel)
January 2025
Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan.
Tacrolimus (TAC)-induced chronic nephrotoxicity (TAC nephrotoxicity) is a serious issue for long-term graft survival in kidney transplantation. However, the pathophysiology of TAC nephrotoxicity remains unclear. In this study, we analyzed whole blood samples from mice that developed TAC nephrotoxicity in order to discover its mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!