Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases. Metal-organic frameworks (MOFs) assembled from inorganic metal ions and organic ligands, characterized by customizable porous architecture and chemical composition, modifiable porosity, vast surface area, straightforward surface modification, and adjustable biocompatibility, have garnered extensive attention in the biomedical sphere. The introduction of MOFs into inhalation therapy represents a promising avenue to navigate past the hurdles associated with traditional inhalation methods. Therefore, this review summarizes the characteristics of inhalation delivery together with the latest advances, challenges, and opportunities in utilizing inhalable MOFs for treating lung diseases and discusses prospects in this field alongside the potential pathways for translating this strategy into clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c16873 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!