Symmetry breaking spin state transitions in two of three isostructural salts of Mn spin crossover cations, [Mn(3-OMe-5-NO-sal323)], with heavy anions are reported. The ReO (1) salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry breaking structural phase transition between a high temperature phase (S=2, C2/c), an intermediate ordered phase (S=1/S=2, P2/c), and a low temperature phase (S=1, C2/c). The AsF (2) complex undergoes an abrupt transition between a high temperature phase (S=2, C2/c) and a low temperature ordered phase (S=1/S=2, P ). The SbF (3) complex undergoes a gradual transition between a high temperature phase (S=2, P ) and a low temperature spin state ordered phase (S=1/S=2, P- ). Correlation of the volume of the anion and the T of the transitions in these complexes and three analogous complexes with similar anions, BF (4), ClO (5), PF (6), reveals an increase in T upon increasing the anion volume. We rationalise that the volume of the anions used modulates the elastic interactions between the Mn sites in the lattice, with increasing elastic frustration with the larger anions resulting in a two-stepped transition for 1 and the stabilisation of the mixed (HS:LS) state to low temperature for 2 and 3.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202404044DOI Listing

Publication Analysis

Top Keywords

temperature phase
16
low temperature
16
spin crossover
12
transition high
12
high temperature
12
phase s=2
12
ordered phase
12
phase s=1/s=2
12
elastic frustration
8
symmetry breaking
8

Similar Publications

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

Incommensurately modulated crystals are a rare class of materials that are notoriously difficult to characterize properly. We have synthesized two new incommensurately modulated compounds, RbTaSe and CsTaSe, based on the MQ (M = Nb, Ta; Q = S, Se) unit using high-temperature solid-state synthesis. Using superspace crystallography in combination with second harmonic generation measurements, we confirmed both materials to be noncentrosymmetric, falling into the superspace group 1(αβγ)0, while the basic cell suggests 2/.

View Article and Find Full Text PDF

Original article: Efficacy and safety of single-dose suraxavir marboxil tablet in the treatment of acute uncomplicated influenza in adults: a multi-center, randomized, double-blind, placebo-controlled phase 2 clinical trial.

Clin Microbiol Infect

January 2025

National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; New Cornerstone Science Laboratory; National Clinical Research Center for Respiratory Diseases; Department of Respiratory Medicine, Capital Medical University, Institute of Respiratory Medicine of Capital Medical University; Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China. Electronic address:

Objectives: To evaluate the therapeutic effect of suraxavir marboxil (GP681, abbreviated as suraxavir) in adults with uncomplicated influenza.

Methods: We conducted a multi-center randomized, double-blind, placebo-controlled phase 2 trial in 18 Chinese centers. Participants had to be aged 18-65 years with positive influenza test, presenting with at least one influenza systemic and respiratory symptoms in at least moderate severity within 48 hours of onset.

View Article and Find Full Text PDF

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!