Symmetry breaking spin state transitions in two of three isostructural salts of Mn spin crossover cations, [Mn(3-OMe-5-NO-sal323)], with heavy anions are reported. The ReO (1) salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry breaking structural phase transition between a high temperature phase (S=2, C2/c), an intermediate ordered phase (S=1/S=2, P2/c), and a low temperature phase (S=1, C2/c). The AsF (2) complex undergoes an abrupt transition between a high temperature phase (S=2, C2/c) and a low temperature ordered phase (S=1/S=2, P ). The SbF (3) complex undergoes a gradual transition between a high temperature phase (S=2, P ) and a low temperature spin state ordered phase (S=1/S=2, P- ). Correlation of the volume of the anion and the T of the transitions in these complexes and three analogous complexes with similar anions, BF (4), ClO (5), PF (6), reveals an increase in T upon increasing the anion volume. We rationalise that the volume of the anions used modulates the elastic interactions between the Mn sites in the lattice, with increasing elastic frustration with the larger anions resulting in a two-stepped transition for 1 and the stabilisation of the mixed (HS:LS) state to low temperature for 2 and 3.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202404044DOI Listing

Publication Analysis

Top Keywords

temperature phase
16
low temperature
16
spin crossover
12
transition high
12
high temperature
12
phase s=2
12
ordered phase
12
phase s=1/s=2
12
elastic frustration
8
symmetry breaking
8

Similar Publications

Effect of Temperature on Condensed State Structure and Conductivity Characteristics of Micron-Level Biaxially Oriented Polypropylene Films.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

Polymer-based dielectric films are increasingly demanded for devices under high electric fields used in new energy vehicles, photovoltaic grid connections, oil and gas exploration, and aerospace. However, leakage current is one of the significant factors limiting the improvement of the insulation performance. This paper tested the leakage current and condensed state structure characteristics of biaxially oriented polypropylene (BOPP) films and obtained the nonlinear characteristics of leakage current of BOPP films in the range of 40-440 V/μm and 40-110 °C.

View Article and Find Full Text PDF

Waste Heat and Habitability: Constraints from Technological Energy Consumption.

Astrobiology

January 2025

Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.

View Article and Find Full Text PDF

High-pressure and low-temperature structural changes in the ferroelectric phase of (R)-3-quinuclidinol are analysed. The changes in unit-cell volume and parameters are continuous both on cooling and under increasing pressure. The anisotropy of the structural strain, however, is found to be different.

View Article and Find Full Text PDF

The magnetic structures of the Ho-based i-MAX phase (MoHo)GaC were studied with neutron powder diffraction at low temperature. (MoHo)GaC crystallizes in the orthorhombic space group Cmcm. The material undergoes two successive antiferromagnetic transitions at T = 10 K and T = 7.

View Article and Find Full Text PDF

Identifying facile strategies for hierarchically structuring crystalline porous materials is critical for realizing diffusion length scales suitable for broad applications. Here, we elucidate synthesis-structure-function relations governing how room temperature catalytic conditions can be exploited to tune covalent organic framework (COF) growth and thereby access unique hierarchical morphologies without the need to introduce secondary templates or structure directing molecules. Specifically, we demonstrate how scandium triflate, an efficient catalyst involved in the synthesis of imine-based COFs, can be exploited as an effective growth modifier capable of selectively titrating terminal amines on 2D COF layers to facilitate anisotropic crystal growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!