Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison. Despite their structural similarities, findings from cultured human cells and gut sac experiments showed that AA-I is absorbed more effectively than AA-II (∼3 times greater for AA-I than for AA-II; < 0.001). This increased absorption, along with the previously observed higher activity of reductive activation enzymes for AA-I, results in greater DNA damage and oxidative stress, both of which are key factors in AA-related toxicity. The similar patterns of cell mortality (34.4 ± 2.3% vs 9.7 ± 0.1% for AA-I and AA-II at 80 μM; < 0.0001), DNA adduct formation (∼3 times greater for AA-I than for AA-II; < 0.001), and oxidative stress levels in relation to the concentrations of AA-I and AA-II indicate that the higher absorption rate of AA-I is a significant contributor to its greater toxicity. The toxicity of AA-I was also found to be further enhanced by its (natural) coexistence with AA-II. Since AA-I and AA-II differ only by a methoxy group, future research on reducing risks associated with AA exposure should focus on strategies to lower the absorption of these compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c10765 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!