Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models. To enable successful tissue transfer in the current work, a nanoparticle excipient system previously demonstrated to be an effective carrier of NCad was integrated with customized DCB coating methodologies designed to prevent therapeutic loss during delivery. DCB design took into consideration four components: (1) the angioplasty balloon; (2) a poly(ethylene oxide) (PEO) monolayer acting as a hydrophilic spacer between the balloon surface and the nanoparticles to assist with improved nanoparticle release; (3) surface-modified degradable polar hydrophobic ionic polyurethane (D-PHI) nanoparticles loaded with NCad to facilitate the transport of the therapeutic peptide into vascular tissue; and (4) a PEO sacrificial coating applied over the nanoparticle excipient layer to prevent premature losses during transit to the artery. The nanoparticle-DCB platform successfully delivered NCad to rat carotid tissue, with superior efficacy and increased permeation within the vessel wall compared with soluble NCad infusion alone. Nanoscale technologies in conjunction with enhanced DCB design properties hold promise in advancing the localized delivery of preventive restenosis therapies in vascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c02417DOI Listing

Publication Analysis

Top Keywords

tissue transfer
8
nanoparticle excipient
8
dcb design
8
ncad
5
delivery
4
delivery n-cadherin
4
n-cadherin targeting
4
targeting peptides
4
peptides vascular
4
vascular tissues
4

Similar Publications

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever (CCHF) is indeed to be considered as one of the most significant vector-borne diseases globally. The virus responsible for CCHF can persist in various animals and lead to severe infections in humans. Ticks of the family are the acknowledged vectors of CCHF virus (CCHFV) transmission to humans.

View Article and Find Full Text PDF

Lymphedema is a chronic condition caused by the accumulation of protein-rich fluid in the interstitial tissue, resulting in edema and a diminished quality of life. When first-line treatments like complete decongestive therapy (CDT) fail, surgical options are considered. These include physiological procedures like lymphaticovenous anastomosis (LVA) and vascularized lymph node transfer (VLNT), which aim to restore lymphatic function, as well as reductive procedures such as liposuction and excisional techniques, which reduce limb volume.

View Article and Find Full Text PDF

Introduction: Hand rejuvenation addresses aging-related changes such as subcutaneous fat loss, skin degradation, and photodamage. Autologous fat transfer (AFT) has emerged as a promising treatment, offering durable volume augmentation and regenerative effects. This study aims to systematically review the evidence on the techniques, outcomes, and complications of AFT for hand rejuvenation.

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!