Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others. Cu doped CeNPs have been applied for the first time as a catalyst in chemiluminescence reactions. Rh B- Cu doped CeNPs reaction was introduced as a novel CL system, and its mechanism was studied. Considering the sensitivity, simplicity, portability, and rapidness of the CL methods, we applied the introduced reaction to the development of a CL sensor for nitrite monitoring. In the presence of nitrite, the CL intensity of the system decreased, and there was a linear relationship between the CL intensity and nitrite concentration in the range 0.5-100 µM. Based on this fact, a sensitive and selective CL sensor with the detection limit of 0.2 µM was established for nitrite detection in various food and water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06877-1 | DOI Listing |
Mikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFMikrochim Acta
October 2024
College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, China.
Ce(SO) was doped into 4,6-diamino-2-mercaptopyrimidine (DAMP)-encapsulated copper nanoclusters (CuNCs) via a facile, rapid, low-temperature, and green self-assembly synthesis method to obtain fluorescent S,N-codoped Cu/Ce-DAMP nanoparticles (S,N-codoped Cu/CeNPs) for the detection of Cr(VI). The prepared Cu/CeNPs exhibit double emission peaks at 470 nm and 610 nm. The fluorescence emission at 610 nm is significantly enhanced due to the aggregation-induced emission (AIE) effect, and the quantum yield is as high as 20.
View Article and Find Full Text PDFJ Mater Chem B
September 2020
Biomedical Engineering and Technology Laboratory, Discipline of Mechanical Engineering, PDPM-Indian Institute of Information Technology Design and Manufacturing, Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India.
Functionalized cerium oxide nanoparticle (CeNP)-loaded fibro-porous poly-l-lactic acid (PLLA)/gelatin composite membranes were prepared via an electrospinning technology. Considering the importance of such membrane scaffolds for promoting angiogenesis in tissue engineering and drug screening, a series of PLLA/gelatin composite fiber membranes loaded with different doses of CeNPs was prepared. The prepared composite membranes demonstrated hydrophilicity, water absorption, and improved mechanical properties compared to a PLLA and PLLA/gelatin membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!