This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection. However, existing AI-based approaches are primarily binary classifiers, lacking specificity in identifying viral types and reliant on nucleotide sequences. To address these limitations, VirDetect-AI, a novel tool specifically designed for the identification of eukaryotic viruses within metagenomic datasets, is introduced. The VirDetect-AI model employs a combination of convolutional neural networks and residual neural networks to effectively extract hierarchical features and detailed patterns from complex amino acid genomic data. The results demonstrated that the model has outstanding results in all metrics, with a sensitivity of 0.97, a precision of 0.98, and an F1-score of 0.98. VirDetect-AI improves our comprehension of viral ecology and can accurately classify metagenomic sequences into 980 viral protein classes, hence enabling the identification of new viruses. These classes encompass an extensive array of viral genera and families, as well as protein functions and hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbaf001 | DOI Listing |
Environ Monit Assess
January 2025
Department of Environmental Management, Graduate School of Agriculture, Kindai University, Nara, Japan.
Efficient agricultural management often relies on farmers' experiential knowledge and demands considerable labor, particularly in regions with challenging terrains. To reduce these burdens, the adoption of smart technologies has garnered increasing attention. This study proposes a convolutional neural network (CNN)-based model as a decision-support tool for smart irrigation in orchard systems, focusing on persimmon cultivation in mountainous regions.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.
This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection.
View Article and Find Full Text PDFJ R Stat Soc Ser C Appl Stat
January 2025
Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.
As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!