We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix. The nanocomposite exhibited superior catalytic activity (91% at 500 °C), which was attributed to dual advantages; the low workfunction of the supporter, O-deficient LaO nanoparticles, promotes electron donation to the Co catalyst in the interface, which leads to enhanced N-H bond dissociation. Moreover, such a composite structure is effective in suppressing the grain growth of Co nanoparticles because the LaO layer works as a diffusion barrier against Co. The thermal decomposition of intermetallics is a new route for the facile synthesis of catalysts having an electronically active support.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c03309 | DOI Listing |
J Mol Model
January 2025
School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
To clarify the effect of heating rate on the thermal decomposition process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), this study employs molecular dynamic simulations to investigate the thermal decomposition of TATB at heating rates of 20, 40, 60, and 80 K/ps. The initial temperature is uniformly set to 300 K, while the final temperature is set to 3000 K. Results indicate that within the temperature range of 300-3000 K, the thermal decomposition rate of TATB decreases with increasing heating rate, whereas the initial decomposition temperature of TATB increases, consistent with the experimental pattern.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
Single-atom nanozymes (SAzymes) with excellent biological catalytic activity have emerged as promising candidates for advancing biomedical applications. Herein, we synthesized a RuN-SAzyme by thermal decomposition. In experiments, the RuN-SAzyme demonstrated exceptional catalytic efficiency in mimicking the activity of peroxidase, with a Michaelis-Menten constant () for 3,3',5,5'-tetramethylbenzidine reaching 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions ( < 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!