Unlabelled: Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries. Here, a retrospective 5-year review at a large teaching hospital found that 88.6% of identified molds were in the Bruker Filamentous Fungi Library 3.0 and 91.5% in the VITEK Knowledge Base Library 3.2.0. A prospective evaluation was also performed on early growth from 205 consecutive, working clinical isolates. Each mold was processed using the VITEK chemical extraction method and modified NIH chemical plus bead-beating extraction method; both extractions were tested on both systems. When compared to conventional identification, more molds were identified using VITEK extractions over NIH extractions using the VITEK (65 and 59%) and Bruker (56 and 54%) systems, respectively, using the ≥1.5 log Bruker threshold. VITEK MS identified more molds, regardless of the extraction method. Isolates without consensus agreement ( = 116) underwent sequence-based identification, which demonstrated that conventional identification had the highest genus-level (84%) but lowest species-level (3%) identification rates compared to VITEK (59 and 52%, respectively) and Bruker (52 and 36%) using VITEK extractions. Taken together, our findings suggest both MALDI-TOF systems can supplement conventional mold identification to optimize identification rates with species-level distinction.

Importance: Mold identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) remains uncommon in clinical laboratories. Contributing concerns include limited genus/species spectra in the MALDI-TOF MS libraries, varying success rates in the literature regarding extraction methods and instrumentation, and the lack of practical performance evaluations using early mold colony growth, which would be used in a clinical mycology laboratory. This study used multiple approaches to improve our understanding of the clinical utility and performance of MALDI-TOF MS mold identification.

Download full-text PDF

Source
http://dx.doi.org/10.1128/jcm.01548-24DOI Listing

Publication Analysis

Top Keywords

mold identification
16
identification
13
extraction method
12
maldi-tof systems
8
extraction methods
8
filamentous fungi
8
conventional mold
8
matrix-assisted laser
8
laser desorption
8
desorption ionization-time
8

Similar Publications

Unlabelled: Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries.

View Article and Find Full Text PDF

; unveiling the cause, spread, and molecular basis of a novel coriander leaf blight disease in Egypt.

Heliyon

January 2025

Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt.

L. faced a new and previously undocumented leaf blight disease for the first time. This disease manifests initially as small, circular, or irregular brown spots on older leaves, which gradually expand and merge into dark brownish blotches over time.

View Article and Find Full Text PDF

Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.

View Article and Find Full Text PDF

Apple Bitter Rot: Biology, Ecology, Omics, Virulence Factors, and Management of Causal Colletotrichum Species.

Mol Plant Pathol

January 2025

Plant Pathology Laboratory, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Winchester, Virginia, USA.

Unlabelled: Apple bitter rot is caused by various Colletotrichum spp. that threaten apple production globally resulting in millions of dollars in damage annually. The fungus causes a decline in fruit quality and yield, eventually rotting the fruit and rendering it inedible.

View Article and Find Full Text PDF

Molecular Identification and Antifungal Susceptibility of Fusarium spp. Clinical Isolates.

Mycoses

January 2025

Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

Background: Accurate identification of Fusarium species requires molecular identification. Treating fusariosis is challenging due to widespread antifungal resistance, high rates of treatment failure, and insufficient information relating antifungal susceptibility to the clinical outcome. Despite recent outbreaks in Mexico, there is limited information on epidemiology and antifungal susceptibility testing (AST).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!