Unlabelled: Although fish possess an effective interferon (IFN) system to defend against viral infection, grass carp reovirus (GCRV) still causes epidemic hemorrhagic disease and tremendous economic loss in grass carp. Therefore, it is necessary to investigate the immune escape strategies employed by GCRV. In this study, we show that the structural protein VP4 of GCRV (encoded by the S6 segment) significantly restricts IFN expression by degrading stimulator of IFN genes (STING) through the autophagy-lysosome-dependent pathway. First, overexpression of VP4 inhibited the expression of IFN induced by GCRV and polyinosinic-polycytidylic acid (poly I:C) at both the promoter and mRNA levels. Second, VP4 was found to associate with STING, and the N-terminal transmembrane domain is essential for this interaction. Additionally, VP4 dramatically blocked STING-induced IFN expression and weakened its antiviral capacity. Further mechanistic studies revealed that VP4 degrades STING via the autophagy-lysosome pathway in a dose-dependent manner. Interestingly, toll-interacting protein (TOLLIP), a selective autophagy receptor, was found to interact with VP4 and reduce VP4-mediated STING degradation after knockdown. Finally, overexpression of VP4 facilitated GCRV proliferation, while its depletion had the opposite effect. These findings indicate that GCRV VP4 recruits TOLLIP to degrade STING and achieve immune escape. This enhances our comprehension of aquatic virus pathogenesis.
Importance: Upon virus invasion, fish cells employ a multitude of strategies to defend against infection. Consequently, viruses have evolved a plethora of tactics to evade host antiviral mechanisms. To date, fewer studies have been conducted on the immune evasion mechanism of grass carp reovirus (GCRV). In this study, we demonstrate that VP4 of GCRV-873 inhibits interferon expression by interacting with stimulator of IFN gene and degrading it in an autophagy-lysosome-dependent manner through the manipulation of the selective autophagy receptor toll-interacting protein. The findings of this study contribute to our understanding of the novel evasion mechanisms of GCRV and widen our knowledge of the virus-host interactions in lower vertebrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1128/jvi.01583-24 | DOI Listing |
J Virol
January 2025
Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
Unlabelled: Although fish possess an effective interferon (IFN) system to defend against viral infection, grass carp reovirus (GCRV) still causes epidemic hemorrhagic disease and tremendous economic loss in grass carp. Therefore, it is necessary to investigate the immune escape strategies employed by GCRV. In this study, we show that the structural protein VP4 of GCRV (encoded by the S6 segment) significantly restricts IFN expression by degrading stimulator of IFN genes (STING) through the autophagy-lysosome-dependent pathway.
View Article and Find Full Text PDFJ Vet Pharmacol Ther
January 2025
Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
The objective of this study was to implement population pharmacokinetic (PPK) of enrofloxacin (EF) in grass carp (Ctenopharyngodon idella) after a single oral administration and a single intravenous administration based on a nonlinear mixed effect model. The plasma samples collected by the sparse sampling method were detected by high-performance liquid chromatography with a fluorescent detector. The initial pharmacokinetic (PK) parameters were evaluated by reference search and the calculation of a naïve pooled method.
View Article and Find Full Text PDFFoods
January 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
Freshwater fish processing produces 30-70% nutrient-rich by-products, often discarded or undervalued. Grass carp by-products, rich in protein, offer potential as raw materials for fermented seasonings. This study explores the use of these by-products-specifically, minced fish and fish skin-in soybean fermentation to evaluate their effects on the quality of the resulting seasonings.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China.
Biogenic amines (BAs), produced in fish and seafood due to microbial contamination, pose significant health risks. This study introduces a novel ratiometric fluorescent probe, synthesized by integrating rhodamine 6G(R6G) and gold nanoparticles (AuNCs), for the sensitive and specific detection of BAs. The probe operates on the principle of BAs hydrolysis, catalyzed by diamine oxidase, to produce hydrogen peroxide (HO), which selectively quenches the fluorescence of AuNCs at 620 nm, while the fluorescence of R6Gat 533 nm remains unaffected.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, Maharashtra, India.
A 60-day feeding trial was conducted to evaluate the combined effect of dietary soy phytoestrogens, specifically genistein and daidzein, on the gonadal recrudescence and maturation of male Cyprinus carpio (Linnaeus, 1758). Adult male C. carpio (60 ± 10 g) were fed with a diet with no added genistein or daidzein (C), 110 mg/100 mg genistein (GL), 210 mg/100 g genistein (GH), 4 mg/100 g daidzein (DL), 8 mg/100 g daidzein (DH), combination of 110 mg/100 mg genistein and 4 mg/100 g daidzein (DGL, equivalent to 17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!