Electrolysis of carbon dioxide (CO2) in acid offers a promising route to overcome CO2 loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO2 to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO2 activation and HER suppression. With this catalyst, we show constant ethylene Faradaic efficiency (FE) of 44.3% over 100 hours at 400 mA cm-2 and a cell voltage of 3.1 volts in a proton-exchange membrane electrolyser. Moreover, selective electrosynthesis of ethylene oxide using the as-produced ethylene was demonstrated in an integrated system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202422054DOI Listing

Publication Analysis

Top Keywords

concentrates diluted
8
proton-exchange membrane
8
potassium ions
8
co2
5
highly tension-strained
4
tension-strained copper
4
copper concentrates
4
diluted cations
4
cations selective
4
selective proton-exchange
4

Similar Publications

Ethylene glycol (EG) has been employed as a cryoprotectant for many years in mammalian semen cryopreservation but not assessed for birds except for its recently illustrated beneficial effects on commercial chicken lines. The Indian red jungle fowl is facing trouble in its native range due to human encroachment. Therefore, the present study was designed to elucidate the cryoprotective effect of different EG concentrations (5%, 10%, 15%, and 20%) on frozen Indian red jungle fowl semen.

View Article and Find Full Text PDF

Highly Tension-Strained Copper Concentrates Diluted Cations for Selective Proton-Exchange Membrane CO2 Electrolysis.

Angew Chem Int Ed Engl

January 2025

University of Science and Technology of China, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, CHINA.

Electrolysis of carbon dioxide (CO2) in acid offers a promising route to overcome CO2 loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO2 to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO2 activation and HER suppression.

View Article and Find Full Text PDF

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Stability of diluted chlorhexidine for skin testing in drug allergy evaluations.

J Allergy Clin Immunol Glob

February 2025

Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz.

Background: Chlorhexidine gluconate (CHX), a common cause of perioperative anaphylaxis, is frequently used for skin testing in allergy evaluations. Although CHX's maximal nonirritating concentrations are known, the stability of its dilutions for skin testing remains unexplored, particularly when sterile water for injection (SWFI) or normal saline (NS) are used as diluents.

Objective: Our aim was to evaluate the stability and precipitation of CHX when diluted with SWFI or NS for drug allergy skin testing.

View Article and Find Full Text PDF

Shear-induced rotation enhances protein adsorption.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Theories predicted that shear promotes desorption, but due to the presence of factors such as aggregation effects, it is difficult to observe how shear influences the adsorption and desorption of individual protein molecules. In this study, we employed high-throughput single-molecule tracking and molecular dynamics simulations to investigate how shear flow affects the adsorption kinetics of plasma proteins (including human serum albumin, immunoglobulin G, and fibrinogen) at solid-liquid interfaces. Over the studied shear rate range of 0 - 10 s, shear stress did not trigger the protein desorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!