Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF, offering the new salt-inclusion chalcogenide BaFS. Notably, it has dramatically enhanced optical anisotropy, thereby significantly boosting birefringence of 0.238@546 nm, achieved by overall considering experimental observations with theoretical analysis. Theoretical investigation has established the significant effect of the covalent S─S bond on the birefringence index. Additionally, BaFS demonstrates a remarkable laser-induced damage threshold (LIDT, 12.0 × AgGaS@1064 nm), illuminating a promising pathway for designing materials with significant birefringence properties in laser applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202409705DOI Listing

Publication Analysis

Top Keywords

interlayer anion
8
birefringence
5
bafs birefringence
4
birefringence enhanced
4
enhanced transformation
4
transformation optical
4
optical isotropy
4
isotropy anisotropy
4
anisotropy interlayer
4
anion substitution
4

Similar Publications

Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF, offering the new salt-inclusion chalcogenide BaFS.

View Article and Find Full Text PDF
Article Synopsis
  • A magnesium-aluminum layered double hydroxide (LDH) was created using a coprecipitation technique from a nitrate solution and transformed into a layered double oxide (LDO) after being heated to 450 °C.
  • During rehydration in a fluoride solution, the LDH's original structure was restored and fluoride ions were absorbed to maintain balance, a finding confirmed by energy-dispersive X-ray spectroscopy (EDS).
  • The study demonstrated that using ethanol during the rehydration process significantly increased fluoride incorporation, and the fluoride release pattern from the material revealed a rapid initial release followed by a slower, prolonged release.
View Article and Find Full Text PDF

Application of zeolites for efficient tannery wastewater remediation.

Environ Sci Pollut Res Int

December 2024

Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy.

Leather manufacturing is the process of converting raw animal hides or skins into finished leather. The complex industrial procedures result in a tanning effluent composed of chemical compounds with potentially hazardous impacts on humans and ecosystems. Among the traditional and efficient wastewater treatments, adsorption is an effective and well-known approach, able to manage a wide range of contaminants from wastewater.

View Article and Find Full Text PDF

Interlayers geo-environmental assessment of phosphate waste rock for sustainable management practices.

Environ Geochem Health

December 2024

Research Institute of Mines and Environment (RIME), Université du Québec en Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada.

Phosphate mines produce large quantities of waste rock. These waste rocks are mixed and managed on the surface as large unrestored piles, which makes them difficult to rehabilitate. They primarily comprise carbonates, clays, marls, and cherts (flints).

View Article and Find Full Text PDF

An Electrochemical Oxidation and Intercalation Strategy for Iodide Removal Using LDHs.

Small

December 2024

State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.

Radioactive iodide harms the ecosystem and human health, necessitating its immobilization to mitigate aquatic iodine pollution. Layered double hydroxides (LDHs), a family of 2D clays with intercalated anions and controllable interlayer structures, are technologically and economically viable adsorbents to eliminate various anion pollutants. However, LDHs exhibit an extremely low affinity toward iodide species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!