Non-native species have higher consumption rates than their native counterparts.

Biol Rev Camb Philos Soc

Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil.

Published: January 2025

Non-native species can be major drivers of ecosystem alteration, especially through changes in trophic interactions. Successful non-native species have been predicted to have greater resource use efficiency relative to trophically analogous native species (the Resource Consumption Hypothesis), but rigorous evidence remains equivocal. Here, we tested this proposition quantitatively in a global meta-analysis of comparative functional response studies. We calculated the log response ratio of paired non-native and native species functional responses, using attack rate and maximum consumption rate parameters as response variables. Explanatory variables were consumer taxonomic group and functional feeding group, habitat, native assemblage latitude, and non-native species taxonomic distinctiveness. Maximum consumption rates for non-native species were 70% higher, on average, than those of their native counterparts; attack rates also tended to be higher, but not significantly so. The magnitude of maximum consumption rate effect sizes varied with consumer taxonomic group and functional feeding group, being highest in favour of non-natives for molluscs and herbivores. Consumption rate differences between non-native and native species tended to be greater for freshwater taxa, perhaps reflecting sensitivity of insular freshwater food webs to novel consumers; this pattern needs to be explored further as additional data are obtained from terrestrial and marine ecosystems. In general, our results support the Resource Consumption Hypothesis, which can partly explain how successful non-native species can reduce native resource populations and restructure food webs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/brv.13179DOI Listing

Publication Analysis

Top Keywords

non-native species
24
native species
12
maximum consumption
12
consumption rate
12
non-native
8
consumption rates
8
native counterparts
8
species
8
successful non-native
8
resource consumption
8

Similar Publications

Non-native species have higher consumption rates than their native counterparts.

Biol Rev Camb Philos Soc

January 2025

Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil.

Non-native species can be major drivers of ecosystem alteration, especially through changes in trophic interactions. Successful non-native species have been predicted to have greater resource use efficiency relative to trophically analogous native species (the Resource Consumption Hypothesis), but rigorous evidence remains equivocal. Here, we tested this proposition quantitatively in a global meta-analysis of comparative functional response studies.

View Article and Find Full Text PDF

: Acute otitis media (AOM) is a common pediatric infection worldwide and is the primary basis for pediatric primary care visits and antibiotic prescriptions in children. Current licensed vaccines have been incompletely ineffective at reducing the global burden of AOM, underscoring a major unmet medical need. The complex etiology of AOM presents additional challenges for vaccine development, as it can stem from multiple bacterial species including , , and .

View Article and Find Full Text PDF

Trophic Structure and Isotopic Niche of Invaded Benthic Communities on Tropical Rocky Shores.

Biology (Basel)

December 2024

Departamento de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, Rua Francisco Xavier 524, PHLC, Sala 220, Rio de Janeiro 20559-900, RJ, Brazil.

When a species is introduced in a new location, it is common for it to establish itself when it finds favorable conditions in the receptor community with regard to interspecific interactions with native species. The azooxanthellate corals coccinea and are invasive species introduced in the Caribbean Sea, the Gulf of Mexico, and the Brazilian Southwest Atlantic. They are successful competitors for space, have multiple reproductive modes, and have high larval dispersion and recruitment, but studies on food and trophic relationships of the genus are still scarce.

View Article and Find Full Text PDF

First Report of the Thermophilic (Linnaeus, 1758) on the Central Adriatic Coast of Italy, in Abruzzo.

Biology (Basel)

November 2024

Department of BioSciences and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy.

The Trabocchi Coast in the Chieti district of the mid-Adriatic (Italy) is one of the few rocky areas within the General Fisheries Commission GSA 17, alongside Mount Conero (Ancona 43°00'01″ N 13°52'13″ E) and the small San Nicola Rock (Ascoli Piceno; 43°32'0″ N 13°36'0″ E). This coastline is known for its biodiversity-rich bays, inlets, and submerged cliffs. Since 2015, annual biodiversity surveys have been conducted in the area, focusing on marine species richness and the identification of non-native species.

View Article and Find Full Text PDF

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!