A non-interpenetrated mesoporous hydrogen-bonded organic framework constructed with 1,3,5-tri(4-carboxyphenyl)benzene.

Chem Commun (Camb)

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.

Published: January 2025

The discovery of porous molecular solids has been constantly hindered by phase transformation and interpenetration. Here, we crystallize two molecules with three substituted carboxylic groups. A mesoporous, non-interpenetrated HOF that is constructed from 1,3,5-tri(4-carboxyphenyl)benzene (TCPB) is discovered and reported for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc06324dDOI Listing

Publication Analysis

Top Keywords

constructed 135-tri4-carboxyphenylbenzene
8
non-interpenetrated mesoporous
4
mesoporous hydrogen-bonded
4
hydrogen-bonded organic
4
organic framework
4
framework constructed
4
135-tri4-carboxyphenylbenzene discovery
4
discovery porous
4
porous molecular
4
molecular solids
4

Similar Publications

Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.

View Article and Find Full Text PDF

Purpose: Traumatic brain injury (TBI) is a life-altering event that can abruptly and drastically derail an individual's expected life trajectory. While some adults who have sustained a TBI go on to make a full recovery, many live with persisting disability many years postinjury. Helping patients adjust to and flourish with disability that may persist should be as much a part of rehabilitative practice as addressing impairment, activity, and participation-level changes after TBI.

View Article and Find Full Text PDF

Background: In online mental health communities, the interactions among members can significantly reduce their psychological distress and enhance their mental well-being. The overall quality of support from others varies due to differences in people's capacities to help others. This results in some support seekers' needs being met, while others remain unresolved.

View Article and Find Full Text PDF

Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

January 2025

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.

View Article and Find Full Text PDF

Quantitative Measurement of Molecular Permeability to a Synthetic Bacterial Microcompartment Shell System.

ACS Synth Biol

January 2025

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States.

Naturally evolved and synthetically designed forms of compartmentalization benefit encapsulated function by increasing local concentrations of substrates and protecting cargo from destabilizing environments and inhibitors. Crucial to understanding the fundamental principles of compartmentalization are experimental systems enabling the measurement of the permeability rates of small molecules. Here, we report the experimental measurement of the small-molecule permeability of a 40 nm icosahedral bacterial microcompartment shell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!