Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications: diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications. We discuss advancements in omics research, summarizing findings from genetic, epigenomic, transcriptomic, proteomic, and metabolomic studies across different ancestries and disease-relevant tissues. We stress the importance of integrating multi-omics techniques to elucidate the biological mechanisms underlying T2D complications and advocate for ancestrally diverse studies. Ultimately, these insights will improve risk prediction for T2D complications and inform translation strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddae203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!