With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions. By deploying cost-competitive offshore wind power, it is projected that by 2050, offshore wind power would contribute 2% to 5% (306-654 TWh) of China's total electricity generation, cumulatively reducing pollutants from the electricity sector by 3% and preventing 165,000 premature deaths. Notably, with the implementation of incentive policies, the scale of offshore wind power deployment expands two to three times, yielding public health benefits that far outweigh the costs of policy implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c06125DOI Listing

Publication Analysis

Top Keywords

offshore wind
28
wind power
28
power
10
public health
8
health benefits
8
power deployment
8
offshore
7
wind
7
environmental public
4
benefits offshore
4

Similar Publications

With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions.

View Article and Find Full Text PDF

Global potential for seaweed aquaculture on existing offshore infrastructure.

Heliyon

January 2025

Centre for Nature Positive Solutions, School of Science, STEM College, RMIT University, Melbourne, Australia.

Seaweed aquaculture is growing 8.9 % annually to a forecast US$ 22.13 billion in 2024 and has several environmental, economic and social co-benefits.

View Article and Find Full Text PDF

Exploring offshore particle motion soundscapes.

J Acoust Soc Am

January 2025

Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03823, USA.

Fishes and aquatic invertebrates utilize acoustic particle motion for hearing, and some additionally detect sound pressure. Yet, few underwater soundscapes studies report particle motion, which is often assumed to scale predictably with pressure in offshore habitats. This relationship does not always exist for low frequencies or near reflective boundaries.

View Article and Find Full Text PDF

Strain-specific virulence of Perkinsus marinus and related species in Eastern oysters: A comprehensive analysis of immune responses and mortality.

Fish Shellfish Immunol

January 2025

Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, Gunsan, 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan, 54150, Republic of Korea. Electronic address:

In this study, we investigated the variability in virulence among different strains of Perkinsus marinus and other Perkinsus species in Eastern oysters (Crassostrea virginica), examining the immune responses and mortality rates of oysters exposed to different Perkinsus isolates. Compared with the other assessed strains, P. marinus strain ATCC 50787 was found to induce significantly (P < 0.

View Article and Find Full Text PDF

Decoding the drivers of variability in chlorophyll-a concentrations in the Pearl River Estuary: Intra-annual and inter-annual analyses of environmental influences.

Environ Res

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China.

Temporal variability and associated driving factors of sea surface chlorophyll-a concentration (Chl-a) in coastal waters have been extensively studied worldwide; however, the importance and spatial heterogeneity of these driving factors remain insufficiently documented. This study addressed this gap by investigating the Pearl River Estuary (PRE) from August 2002 to June 2016, using long-term remote sensing-derived data of Chl-a and potential driving factors, including total suspended solids (TSS), precipitation, photosynthetically active radiation (PAR), and sea surface temperature (SST); and in situ measurements of potential driving factors, including river discharge, wind speed, alongshore wind (u), cross-shore wind (v), and tidal range. A pixel-by-pixel correlation analysis was conducted to preliminarily examine the relationships between these potential driving factors and Chl-a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!