The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt. However, the guanine repetitive telomeric sequences are always flanked by other nucleobases at both the terminal (5' or 3') that can affect the drug-induced folding pathways and stability of the G4 significantly. Hence, in this study, the HCQ and CQ drug-induced folding of the guanine repetitive telomeric sequences into G4 and its stability by varying the chemical nature, number, and positions of the flanking nucleobases has been explored using several biophysical techniques and docking studies. It has been found that the drug-induced folding of telomere with single flanking nucleobases is similar to that without flanking nucleobases irrespective of the chemical nature and position of the flanking nucleobase. However, the propensity of the folding and the stability of the telomeric G4 induced by drugs decrease significantly with the increase of the flanking nucleobases more than one of any chemical nature and position. The data suggest that the number of flanking nucleobases rather than their chemical nature and location is a critical factor in the folding of the telomere into G4 induced by both drugs. Further, it has been observed that both drugs mainly interact with the G-tract and thymine of the loop region rather than the flanking nucleobases of the telomeric sequences without or with one flanking nucleobase. In contrast, the flanking nucleobases also participate in the interaction with the HCQ and CQ along with the core guanine repeat telomeric unit in the case of the telomeric sequences with more than one flanking nucleobases. The participation of the flanking nucleobases in the interaction with the HCQ and CQ affects the hydrogen bonding of the positively charged side chain of drugs with G quartet and loop nucleobases of telomere along with the with π···π and C-H···π weak interactions between the quinoline part of the drugs with the core telomeric guanine repeat unit which affects the folding pattern of the telomere sequences with more than one flanking nucleobases into G4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c05133 | DOI Listing |
J Phys Chem B
January 2025
School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt.
View Article and Find Full Text PDFJ Phys Chem B
July 2024
School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 India.
The stability of the human telomere G-quadruplex (G4) is directly linked to cancer disease. The human telomere is mostly associated with the flanking nucleobases, which can affect the stability of G4. Hence, in this study, the effect of the flanking nucleobases in the context of their chemical nature, number, and position on the structure and stability of G4 has been investigated in varying concentrations of KCl mimicking the normal and cancer KCl microenvironments.
View Article and Find Full Text PDFPLoS One
December 2023
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America.
Malaria remains a major public health threat for billions of people worldwide. Infection with obligate intracellular, unicellular parasites from the genus Plasmodium causes malaria. Plasmodium falciparum causes the deadliest form of human malaria.
View Article and Find Full Text PDFChem Res Toxicol
December 2023
Departments of Chemistry and Biochemistry, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States.
The genotoxic 3-(2-deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (MdG) DNA lesion arises from endogenous exposures to base propenals generated by oxidative damage and from exposures to malondialdehyde (MDA), produced by lipid peroxidation. Once formed, MdG may oxidize, , to 3-(2-deoxy-β-D-erythropentofuranosyl)-pyrimido[1,2-]purine-6,10(3,5)-dione (6-oxo-MdG). The latter blocks DNA replication and is a substrate for error-prone mutagenic bypass by the Y-family DNA polymerase hpol η.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2023
College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
Dramatic fluorescence quenching of small heterocyclic ligands trapped in the abasic site (AP) of DNA has been implemented as an unprecedented strategy recognizing single-base mutations in sequence analysis of cancer genes. However, the key mechanisms governing selective nucleobase recognition remain to be disentangled. Herein, we perform fluorescence quenching dynamics studies for 2-amino-7-methyl-1,8-naphthyridine (AMND) in well-designed AP-containing DNA single/double strands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!