Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore. These sensors are characterized using a multiscale approach combining equilibrium and steered QM/MM molecular dynamics models to capture the chemical, mechanical, and conformational transitions underlying force activation thresholds on a nano Newton scale. We find that chemical modification of the mechanophore and variation of its biomolecular tethers can tune the rate-determining step for fluorophore release and adjust the mechanochemical activation barrier. The models offer a new molecular framework for calibrated, programmable biomolecular force reporting within the live-cell regime, opening new opportunities to study mechanical phenomena in biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728885 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e41178 | DOI Listing |
Cell Regen
January 2025
Guangzhou National Laboratory, Guangzhou, 510005, China.
Organoid technology provides a transformative approach to understand human physiology and pathology, offering valuable insights for scientific research and therapeutic development. Human gastric organoids, in particular, have gained significant interest for applications in disease modeling, drug discovery, and studies of tissue regeneration and homeostasis. However, the lack of standardized quality control has limited their extensive clinical applications.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
To clarify the effect of heating rate on the thermal decomposition process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), this study employs molecular dynamic simulations to investigate the thermal decomposition of TATB at heating rates of 20, 40, 60, and 80 K/ps. The initial temperature is uniformly set to 300 K, while the final temperature is set to 3000 K. Results indicate that within the temperature range of 300-3000 K, the thermal decomposition rate of TATB decreases with increasing heating rate, whereas the initial decomposition temperature of TATB increases, consistent with the experimental pattern.
View Article and Find Full Text PDFChem Biodivers
January 2025
University of South China, Department of Gastroenterology, Chuanshan Road, Hengyang, CHINA.
The formation of gastric precancerous-lesions (GPLs) has been identified as a critical step in tumorigenesis, and patients with GPLs have an increased risk of gastric cancer. Magnolol is the primary biphenolic compound in Magnolia officinalis. It possesses various pharmacological properties, such as cardioprotective and neuroprotective properties, and inhibit tumor growth.
View Article and Find Full Text PDFChemistry
January 2025
The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The natural product synthesis of brevione J undergoes a cascade of reactions including an oxidative desaturation and a ring-expansion. The C1-C2 desaturation of brevione B is catalyzed by the nonheme iron dioxygenase BrvJ using one molecule of O2 and a-ketoglutarate (aKG). However, whether the subsequent oxidative ring expansion reaction is also catalyzed by the same enzyme is unknown and remains controversial.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
SUMMARYThe human malaria parasite is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!