Assistive technologies for people with visual impairments (PVI) have made significant advancements, particularly with the integration of artificial intelligence (AI) and real-time sensor technologies. However, current solutions often require PVI to switch between multiple apps and tools for tasks like image recognition, navigation, and obstacle detection, which can hinder a seamless and efficient user experience. In this paper, we present NaviGPT, a high-fidelity prototype that integrates LiDAR-based obstacle detection, vibration feedback, and large language model (LLM) responses to provide a comprehensive and real-time navigation aid for PVI. Unlike existing applications such as Be My AI and Seeing AI, NaviGPT combines image recognition and contextual navigation guidance into a single system, offering continuous feedback on the user's surroundings without the need for app-switching. Meanwhile, NaviGPT compensates for the response delays of LLM by using location and sensor data, aiming to provide practical and efficient navigation support for PVI in dynamic environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727231 | PMC |
http://dx.doi.org/10.1145/3688828.3699636 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!