Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Published: January 2025

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored. We successfully isolated HFMSC-Exos using the ultracentrifugation technique. In cellular experiments, we assessed the migration of human dermal fibroblasts (HDFs) through scratch and transwell assays, evaluated the angiogenesis of human umbilical vein endothelial cells through angiogenesis assays, and examined the expression levels of collagen and matrix metalloproteinase 1 (MMP-1) using Western blotting and quantitative reverse transcription polymerase chain reaction. Furthermore, we established a nude mouse model of photoaging to observe wrinkle formation on the dorsal surface of the animals, as well as to assess dermal thickness and collagen fiber generation through histological staining. Ultimately, we performed RNA sequencing on skin tissues from mice before and after treatment to elucidate the relevant underlying mechanisms. Our findings revealed that HFMSC-Exos effectively enhanced the migration and proliferation of HDFs and upregulated the expressions of transforming growth factor-β1 (TGF-β1), p-Smad2/p-Smad3, collagen type 1, and collagen type 3 while concurrently down-regulating MMP-1 levels in HDFs. Additionally, mice in the HFMSC-Exo group showed quicker wrinkle healing and increased collagen production. HFMSC-Exos miR-125b-5p was demonstrated to reduce skin photoaging by increasing profibrotic levels via TGF-β1 expression. UV-irradiated HDFs and photoaged nude mouse skin showed low TGF-β1 expressions, whereas overexpression of TGF-β1 in HDFs increased collagen type 1, collagen type 3, and p-Smad2/p-Smad3 expressions while decreasing MMP-1 expression. HDFs overexpressing TGF-β1 produced more collagen and altered the Smad pathway. This study demonstrated, both in vitro and in vivo, that HFMSC-Exos increased collagen formation, promoted HDF cell proliferation and migration, and reversed the senescence of UV-irradiated HDFs. TGF-β1 was identified as a target of HFMSC-Exos miR-125b-5p, which controls photoaging via regulating the Smad pathway. The antiphotoaging capabilities of HFMSC-Exos may occur via the miR-125b-5p/TGF-β1/Smad axis, suggesting a promising therapeutic approach for treating skin photoaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725759PMC
http://dx.doi.org/10.34133/bmr.0121DOI Listing

Publication Analysis

Top Keywords

collagen type
16
mesenchymal stem
12
skin photoaging
12
increased collagen
12
collagen
9
human hair
8
hair follicle
8
follicle mesenchymal
8
photoaging
8
mir-125b-5p/tgf-β1/smad axis
8

Similar Publications

CircZMYM2 Alleviates TGF-β1-Induced Proliferation, Migration and Activation of Fibroblasts via Targeting miR-199b-5p/KLF13 Axis.

Appl Biochem Biotechnol

January 2025

Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.

Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.

View Article and Find Full Text PDF

A novel COL3A1 gene variant associated with sudden death due to spontaneous pneumothorax.

Forensic Sci Med Pathol

January 2025

Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Spontaneous pneumothorax (SP) is a condition defined by abnormal gas accumulation in the chest cavity. Mutations of the collagen type III alpha 1 chain, COL3A1 gene, are primarily linked to vascular Ehlers-Danlos syndrome (vEDS); however, they can also contribute to structural changes in the tissue, like bullae of the lungs. In this case report, we present a young, thinly built boy who died due to a spontaneous pneumothorax.

View Article and Find Full Text PDF

Background: Classical-like Ehlers Danlos Syndrome type 1 (clEDS1) is a very rare form of Ehlers Danlos Syndrome (EDS) caused by tenascin-X (TNX) deficiency, with only 56 individuals reported. TNX is an extracellular matrix protein needed for collagen stability. Previous publications propose that individuals with clEDS1 might be at risk for gastrointestinal (GI) tract perforations and/or tracheal ruptures.

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!