In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites. This framework demonstrated exceptional catalytic performance in the synthesis of porphyrins. Substituting aerobic conditions of costly oxidizing agents represents a significant advancement in our methodology. Due to the insolubility of the catalyst, it is possible to separate it from the reaction mixture through filtration or centrifugation. This property enhances its reusability and minimizes waste generation. This development in the synthesis and application of CTFs could pave the way for more sustainable and cost-effective catalytic processes in organic synthesis, particularly in the synthesis of complex molecules like porphyrins. The research highlights the potential of CTFs as versatile materials in catalysis, owing to their structural properties and the ability to tailor their functionalities for specific applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726313PMC
http://dx.doi.org/10.1039/d4ra07875fDOI Listing

Publication Analysis

Top Keywords

covalent triazine
12
triazine framework
12
synthesis porphyrins
8
framework ctf
8
synthesis
7
application novel
4
novel silica
4
silica stabilized
4
stabilized covalent
4
framework
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!