Platform chemicals from renewable resources with broad applications are highly desirable, particularly for replacing fossil-based monomers. Bifunctional aliphatic ester-aldehydes, accessible via regioselective hydroformylation of unsaturated oleochemicals, can be converted into linear ω-amino/ω-hydroxy esters and dicarboxylic acids-key building blocks for biobased aliphatic polycondensates. However, their success hinges on efficient, economically viable production, with catalyst recycling being critical. We present the Rh-catalyzed, cyclodextrin-mediated, aqueous biphasic hydroformylation of methyl 10-undecenoate (from castor oil) and methyl 9-decenoate (from rapeseed oil) to produce methyl 12-oxododecanoate and methyl 11-oxoundecanoate, respectively, with high yields and productivity. This system allows for efficient catalyst recycling via decantation, maintaining 30 % of its native activity in aqueous biphasic conditions. Reaction conditions were optimized using a tailored experimental design, reducing nearly 200 experiments to 39 without sacrificing predictive accuracy. The optimized conditions were transferred to a continuous miniplant, achieving a low rhodium loss of 0.018 % h, with excellent space-time yields of 76.5 kg h m. Rhodium in the product was as low as 79 ppb, with 4.4 kg of product per mg of catalyst lost, marking a significant step in combining hydroformylation-derived, bio-based platform chemicals with economic industrial potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202402421 | DOI Listing |
Heliyon
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315516, Ilam, Iran.
This study highlights an innovative approach to catalysis by utilizing natural asphalt as a support material for developing carbon-based catalysts. By leveraging the principles of green chemistry, the research aims to create recyclable and environmentally friendly heterogeneous catalytic systems. This aligns with the growing demand for greener technologies and the use of biocompatible materials in chemical processes.
View Article and Find Full Text PDFMRS Bull
November 2024
Bioelectronics & Bioenergy Research Lab, Centre for Functional Ecology-Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
Abstract: Filamentous cyanobacteria originate toxic harmful algal blooms (HABs) in aquatic ecosystems, severely impacting freshwater ecosystems and life. Despite being natural bloomers, these microorganisms are challenging to handle , due to the formation of aggregates with entangled filaments. Consequently, their precise growth dynamics, although vital to timely predict HABs, remains inaccessible.
View Article and Find Full Text PDFJ Pharm Anal
October 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO) and Ferrosoferric oxide (FeO) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO or FeO nanoparticles alone.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
Ensuring detection performance and shelf life is crucial for analytical devices. Advances in materials and reaction mechanisms have improved detection performance, yet extending the operational lifetime of microfluidic paper-based analytical devices (μPADs)─especially those reliant on sensitive enzymes─remains a challenge. Here, we present an alternative to air-drying and lyophilization: loading enzymes suspended in 2-propanol (iPrOH).
View Article and Find Full Text PDFSci Rep
January 2025
Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132109, China.
It is challenging to achieve high-speed and accurate multicooperation of turtle-inspired amphibious spherical robots (ASRs) in turbid water and confined spaces when the robots are underwater movement with multiple degrees of freedom (MDOF). This paper innovatively proposes a control strategy for modelling and experimental platforms that can communicate and cooperate between multiple robots. First, a novel underwater kinematic model using the unit quaternion (UQ) algorithm is proposed based on attitude interpolation to realize MDOF movement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!