The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules. This material exhibits a good acetylene capacity of 55.31 cm g and high CH/CO selectivity of 7.0 under ambient conditions. We have combined IR spectroscopy and in-depth theoretical calculations to unravel the synergistic interactions driven by the high density of accessible oxygen and nitrogen sites. Furthermore, dynamic breakthrough experiments confirmed the capability of TUTJ-201Ni for the separation of binary CH/CO mixtures. This study on Ni-based MOFs will enrich Lewis basic site rich MOFs for gas adsorption and separation applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt03411b | DOI Listing |
Dalton Trans
January 2025
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of North Texas, Department of Chemistry, 1508 W Mulberry St, 76201, Denton, UNITED STATES OF AMERICA.
Converting CO2 to high-value fine chemicals represents one of the most promising approaches to combat global warming and subsequently achieve a sustainable carbon cycle. Herein, we contribute an organoboron functionalized ultra-thin metal-organic nanosheet (MON), termed TCPB-Zr-NS, featuring an abundance of exposed Lewis acidic B and formate sites, which can effectively promote CO2 conversion upon the addition of Lewis basic o-phenylenediamines. Compared with the prototypical 3D analogue TCPB-Zr-3D, the resultant TCPB-Zr-NS showcases dramatically improved catalytic activity for the cyclization of o-phenylenediamine as a result of the highly exposed active sites and efficient substrates/products diffusion.
View Article and Find Full Text PDFImmunology
January 2025
Oncology Department, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, China.
Circadian rhythm is a physiological process that oscillates in a 24 h cycle. It has a complex connection with the function of the human immune system and even with the development of tumours. Previous studies demonstrated the time-dependent effects of chemotherapy and radiotherapy; however, there are few studies on the timing effects of immunotherapy.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China.
Oxazoles are important five-membered heterocycles that contain both nitrogen and oxygen atoms. Due to their wide range of biological activities, many oxazoles demonstrate potential for extensive application in various fields, including medicinal chemistry. Trifluoromethyl carbinol, an important pharmacophore, contains both trifluoromethyl and hydroxyl groups and is common in molecules with important biological activities.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
Perpendicular nanochannel creation of two-dimensional (2D) nanostructures requires highly controlled anisotropic drilling processes of the entire structure via void formation. However, chemical approaches for the creation of porosity and defects of 2D nanostructures have been challenging due to the strong basal plane chemical stability and the use of harsh reactants, tending to give randomly corroded 2D structures. In this study, we introduce Lewis acid-base conjugates (LABCs) as molecular drillers with attenuated chemical reactivity which results in the well-defined perpendicular nanochannel formation of 2D TiS nanoplates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!