Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis. Recent advances in the design of hCA-targeted photothermal agents have shown promise in selectively targeting and ablating cancer cells while sparing healthy tissues. We explore here recent advancements in developing combination therapies that integrate hCA-targeted strategies with PTT for tumor treatment. By focusing on tumor-associated isoforms hCA IX and hCA XII, we underscore the potential of hCA inhibition to enhance both the efficacy and specificity of PTT in cancer therapy. We also address critical challenges and outline future directions, emphasizing the need to improve the biocompatibility, stability, and clinical translation of hCA-targeted photothermal agents. This mini review highlights the promise of combining hCA inhibition with PTT as an innovative therapeutic approach, aiming to advance more precise and effective cancer treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.202400893 | DOI Listing |
ChemMedChem
January 2025
Université de Montpellier, IBMM UMR 5247 - Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier, FRANCE.
Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China. Electronic address:
Carbonic anhydrases (CAs) has garnered increasing attention in carbon capture, utilization and storage (CCUS) due to their ecological friendliness. However, most of them suffer susceptibility to deactivation in harsh conditions. Herein, a reliable dataset was adopted for creating ancestral CAs through an optimized ancestral sequence reconstruction (ASR) method.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Basic Biological Problems, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia.
The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.
View Article and Find Full Text PDFBioorg Chem
January 2025
Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan. Electronic address:
A series of novel phenyl naphthalene-2-sulfonate-based thiosemicarbazones (5a-v) were synthesized and evaluated for their inhibitory activity against human carbonic anhydrases I and II (hCA I and hCA II). Compounds 5d and 5p demonstrated the highest inhibitory potency, with IC values of 4.32 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!