Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field. This study employed a self-assembly method without using modifiers based on promoter-induced self-assembly to synthesize stable and plasmonically active surfaces from citrate-reduced Ag and Au nanoparticles. Hierarchical structures like Pickering emulsions (PEs) and stable plasmonic aggregates (SPAs) were studied, focusing on controlling their sizes using "promoters" (TBANO). The sizes of the SPAs were also adjusted from 85.5 nm to 136 nm by regulating the ratio of the water to the oil phase. Furthermore, to understand the distribution of "hot-spots" on these Au or Ag hierarchical structures, the electric field was simulated using the finite difference time domain (FDTD) software. Third-generation hotspots were also created using hybrid structures of plasmonic nanomaterials and surfaces to significantly improve SERS detection by depositing the colloidosome structure on Cu foil (AgSPAs/Cu substrate). The SERS signal was amplified by achieving an enhancement factor of 7 × 10, compared to an enhancement factor of 2 × 10 when using the AgSPA/glass substrate. Significantly, the limits of detection (LOD) and quantification (LOQ) for the colloidosome substrate to detect crystal violet were found to be 4.51 ppb and 13.66 ppb, respectively. The reproducibility of the prepared substrates was demonstrated to be commendably high, characterized by relative standard deviations (RSDs) of 8.00% for the 1177 cm peak, 7.61% for the 1588 cm peak, and 9.35% for the 1619 cm peak. The AgSPAs/Cu substrate's demonstrated reliability made it suitable for detecting and quantifying analytes, potentially for determining trace amounts of pesticide residues. The LOD and LOQ for thiram detection were calculated to be 0.1 ppm and 0.3 ppm, respectively. These findings highlight the effectiveness of increasing electromagnetic field density for SERS enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4sm01272k | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).
Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).
Soft Matter
January 2025
Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.
View Article and Find Full Text PDFNanoscale
January 2025
Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China.
In recent years, the regulation of anion-mediated chiral assemblies has gained significant interest. This study investigated the modulation of supramolecular chiroptical signals and chiral assembled structures in a triarylamine system containing a urea moiety through fluoride ion-urea bond interactions, aiming to understand the chiral sense amplification in supramolecular assemblies. Chiral triarylamine derivatives containing urea or amide units were synthesized and the self-assemblies were examined in the absence and presence of fluoride ions.
View Article and Find Full Text PDFSmall
January 2025
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Fribourg: Universite de Fribourg, Department of Chemistry, Chemin du Musée 9, 1700, Fribourg, SWITZERLAND.
The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!