A claim that ionic bonds exist only in ionic solids is critically analyzed by focusing on the controversial LiH molecule, classified as covalent by non-orthogonal valence bond supporters, polar-covalent by molecular orbital advocates, and ionic by real-space proponents. Using orbital invariant techniques we show that LiH can be regarded ionic in the same manner that dihydrogen is considered covalent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp04353g | DOI Listing |
Nat Commun
January 2025
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.
The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials.
View Article and Find Full Text PDFSmall
January 2025
Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany.
Separators are critical components of zinc-metal batteries (ZMBs). Despite their high ionic conductivity and excellent electrolyte retention, the widely used glass fiber (GF) membranes suffer from poor mechanical stability and cannot suppress dendrite growth, leading to rapid battery failure. Contrarily, polymer-based separators offer superior mechanical strength and facilitate more homogeneous zinc (Zn) deposition.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China. Electronic address:
The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan. Electronic address:
The adsorption reaction on clay minerals is crucial for understanding the environmental behavior of various cations, including cesium (Cs). However, its details remain unclear because of multiple adsorption sites of the clay minerals, a significant difference between concentrations in the atomic-scale experiments and the actual environment, and difficulties of evaluating bonding states of the adsorbed cations. It is expected that systematic experiments at the atomic-scale with a wide concentration range and application of density functional theory (DFT) calculations overcome the problems and bring crucial insights to link laboratory experiment results with environmental sample analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!